影像科学与光化学 ›› 2016, Vol. 34 ›› Issue (3): 245-251.DOI: 10.7517/j.issn.1674-0475.2016.03.245

• 论文 • 上一篇    下一篇

Fe掺杂ZnO空心微球的制备与光催化性能

王勐, 夏静, 朱丹丹, 王磊, 孟祥敏   

  1. 中国科学院 理化技术研究所 光化学与光功能材料重点实验室, 北京 100190
  • 收稿日期:2016-04-05 修回日期:2016-04-29 出版日期:2016-05-15 发布日期:2016-05-15
  • 通讯作者: 孟祥敏
  • 基金资助:

    中国科学院战略重点项目(XDA09040203)和科技部973项目(2012CB932401)资助

Preparation and Photocatalytic Performance of Fe Doped ZnO Hollow Microspheres

WANG Meng, XIA Jing, ZHU Dandan, WANG Lei, MENG Xiangmin   

  1. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
  • Received:2016-04-05 Revised:2016-04-29 Online:2016-05-15 Published:2016-05-15

摘要:

ZnO是一种重要的Ⅱ-Ⅵ族半导体材料,其能带宽度约为3.37eV,在光电子学、传感、光催化、发电等诸多领域都具有巨大的应用潜力。本文采用简单的离子交换和热蒸发法成功制备了Fe掺杂ZnO空心微球,并利用扫描电镜、透射电镜、X射线粉末衍射仪对其形貌、结构以及成分等进行了详细的表征。光吸收测试证明Fe元素掺杂能够扩展ZnO的光吸收波段,实现波长375~600nm的光波吸收。另外,光催化实验证明Fe掺杂ZnO空心微球能够有效地促进罗丹明B的降解,表明合成的Fe掺杂ZnO空心微球是一种优异的光催化剂。

关键词: 热蒸发, 氧化锌, 铁掺杂, 空心微球, 光催化

Abstract:

As an important Ⅱ-Ⅵ semiconductor, ZnO possesses a band gap around 3.37 eV and shows huge potential applications in optoelectronics, sensing, photocatalysis, electricity generation and so on. In this work, we successfully synthesized Fe doped ZnO hollow microspheres via simple ion exchange and thermal evaporation methods. The morphology, structure and composition of the product have been systematically investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Light absorption measurements indicated that Fe dopants can enhance the light absorption performance of ZnO in light wave band of 375~600 nm. Additionally, photocatalytic characterization demonstrated that Fe doped ZnO hollow microspheres can promote the photodegradation of Rhodamine B, implying that the as-synthesized Fe doped ZnO hollow microspheres are extraordinary photocatalysis.

Key words: thermal evaporation, ZnO, Fe dopants, hollow microspheres, photocatalysis