影像科学与光化学  2012, Vol. 30 Issue (4): 280-288   PDF (1252 KB)    
疏水石墨烯水相分散液的制备及电化学性能
金成勋1,2,3, 李丹丹1,2, 李久铭1,2, 余愿1, 李豫珍1,2, 只金芳1     
1. 中国科学院 理化技术研究所 光化学转换与功能材料重点实验室, 北京 100190;
2. 中国科学院 研究生院, 北京 100049;
3. 朝鲜国家科学院 电子材料研究所 功能材料实验室, 平壤, 朝鲜
摘要:通过未添加表面活性剂和稳定剂而得到均匀的石墨烯水相分散液的方法,近来来成为研究的一大热点.本工作通过提高水合肼的用量,来替代表面活性剂或者其它稳定剂的作用,得到了良好的均匀的水相石墨烯分散液,可长期稳定存放,6个月内未发生团聚现象.其Zeta电位低于-32.5 mV(pH值为5.89),原子力显微镜和透射电子显微镜图像表明产物为具有褶皱结构的、六方晶系的单层石墨烯结构,厚度为0.38 nm.XPS分析显示这种方法对于除去羟基和环氧基团起到了有效的作用.利用这种分散液所制备的石墨烯-玻碳电极(GE-GCE)在检测抗坏血酸(AA)和尿酸(UA)时,比普通玻碳电极(GCE)显示出更良好的电化学响应.
关键词石墨烯     分散液     水合肼     电化学响应    
Preparation Hydrophobic Graphene Aqueous Dispersion and Electrochemical Properties
KIM Song-hun1,2,3, LI Dan-dan1,2, LI Jiu-ming1,2, YU Yuan1, LI Yu-zhen1,2, ZHI Jin-fang1     
1. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R.China;
3. Key Laboratory of Functional Materials, Institute of Electronic Material, Academy of Sciences, UnJong District, Pyongyang, DPR Korea
Abstract: The direct dispersion of hydrophobic graphene sheets in water without the assistant of surfactant stabilizers has recently been recognized as an important task for production of individual graphene sheets. We developed a facial method to disperse hydrophobic graphene sheets in aqueous medium through enlarging the amount of hydrazine-hydrate in the absence of surfactant or any other foreign electrostatic stabilization agents. Homogeneous aqueous graphene dispersion had produced lower zeta potential of more negative than -32.5 mV at solution pH of 5.89 and was stable for six months without any precipitate. The folded individual single-layer graphene sheets with 0.38 nm layer thick and the formation of a hexagonal crystalline graphene structure were observed from AFM and TEM images, respectively. XPS analysis showed the efficient reduction of graphene oxide. As-prepared graphene-glassy carbon electrode (GE-GCE) showed a relatively sensitive electrochemical response toward the detection of AA and UA than glassy carbon electrode (GCE).
Key words: graphene     dispersion     hydrazine-hydrate     electrochemical response    

石墨烯是一种具有蜂巢状晶格结构的二维碳素材料,具有优良的电、热和机械性能[1,2],可应用于多领域,如纳米电子器件[3,4]、纳米复合材料[5,6,7]、化学传感器和生物传感器[8,9,10,11]等.目前,已报道的制备石墨烯方法有机械剥离法[12]、晶体外延法[13] 、化学气相沉积法(CVD)[14]以及化学溶液法[15,16,17,18,19,20,21,22,23]等.其中,化学溶液法成本低,在石墨烯制备中得到广泛使用,但是溶液法中所制备的石墨烯片在无分散剂或者稳定剂存在的情况下,容易发生团聚,影响石墨烯的性能.所以如何阻止石墨烯团聚,是一项很重要的工作[15].前人为了获得稳定的石墨烯分散液,通常利用了一些添加剂,如聚合物稳定剂[16, 17],表面活性 剂[18, 19]或者是其他小分子稳定剂[20, 21].然而,所添加的异物存在于石墨烯片之间,会降低石墨烯的纯度,影响它的性能.因此,不添加表面活性剂制备石墨烯分散液的方法受到关注[15, 22, 23].Li[15]等用适当量的肼和氨水来得到石墨烯水相分散液,所产生的石墨烯片显示厚度为1 nm.而Vincent [22] 等在无水肼中分散氧化石墨烯膜,制备了石墨烯-无水肼分散液,得到的石墨烯片厚度为0.6 nm.而文献[23]中虽然也以过量肼还原氧化石墨烯(氧化石墨与肼质量比是1∶125),并在乙醇/水混合溶液中分散产物,但未能制成单层石墨烯片,且稳定期间只有几周.

本文介绍一种稳定的石墨烯水相分散液的制备方法,用大量水合肼(氧化石墨与肼质量比是1:295)来代替其它稳定剂,所制得的石墨烯片厚度为0.38 nm,而且可有长达6个月的稳定期.利用该分散液制备的石墨烯-玻碳电极用于检测AA和UA时,其电化学响应良好. 1 实验部分 1.1 氧化石墨烯(GO)的水分散液的制备

氧化石墨烯是由纯净的天然石墨粉(Sigma-Aldrich 公司) 经氧化处理而成[24].氧化石墨烯首先用2 mol/L的盐酸除去金属离子,去离子水洗净,然后用140 mL的去离子水溶解,制成0.57 mg/mL的悬浮液.制得的GO悬浮液经超声波处理器处理30 min,再用离心机(旋转速率10000 转/min)进行15 min的离心处理,除去未氧化剥离成片的石墨,最后制得均匀的0.5 mg/mL的黄褐色GO分散液. 1.2 石墨烯(GE)水相分散液的制备

GE水相分散液是通过简单的化学还原反应制备的.水合肼作为还原剂,不添加任何分散剂.将10 mL的水合肼(质量分数为80%)与70 mL GO水相分散液(浓度为0.5 mg/mL)混合,于70 °C下搅拌12 h,最终制得石墨烯(GE)的水相分散液. 1.3 石墨烯-玻碳电极(Graphene-Glassy Carbon Electrode,GE-GCE)的制备

将已制备的石墨烯分散液用去离子水稀释22倍,超声波处理5 min.将稀释好的石墨烯溶液与等体积的乙醇混合,超声处理1 min.然后将5 μL的溶液滴加在玻碳电极上,自然干燥1 h.滴加溶液前,将玻碳电极依次用1.0、0.3、0.05的氧化铝粉抛光,然后在水和乙醇中分别经超声波处理一段时间,室温干燥.然后直接用于电化学检测. 1.4 仪器设备

由Zeta电位分析仪(Zetasizer 3000 HSA,Malvern仪器,英国)检测所制备的石墨烯和氧化石墨水相分散液的Zeta电位.利用UV-Vis分光光度仪(Varian Cry5000)表征所制备的石墨烯和氧化石墨水相分散液的吸收特性.石墨烯片的AFM和TEM图像是分别用原子力学显微镜(Veeco,美国)和透射电子显微镜TEM (Philips Tec nai G20)得到的.XPS(扫描X射线微探针,PHI Quantera,ULVAC-PHI,Inc.)用以表征氧基功能团的还原程度.样品的结晶度用X射线衍射仪(XD-2,Cu/Kα,5°—70°; Purkinje General Instrument Co.,Ltd)表征.

电化学检测在电化学工作站(263A Princeton)上进行,采用三电极体系,其中工作电极是直径为3 mm的被GE石墨烯片修饰的玻碳电极,参比电极是Ag/AgCl电极,对电极是Pt电极. 2 结果与讨论

石墨烯片本身具有容易凝聚的属性.水溶液中石墨烯片之间吸引力和排斥力只有在达到平衡的条件下,才能保持稳定性.相反,氧化石墨因具有许多含氧功能团形成的层状结构,通过简单的超声波处理,就能够分散在水中.GO的Zeta电位值表明,带负电的GO层通过静电斥力能形成稳定的水悬浮液(图1a).水溶液中如果没有表面活性剂或者其它稳定剂,肼还原的疏水石墨烯片很容易团聚[15, 21].我们未添加任何表面活性剂或稳定剂,仅增大水合肼的用量来制备石墨烯水分散液,以提高其纯度和还原度.过量的肼不仅可以对氧化石墨烯片起到还原剂的作用,而且可环绕在疏水性石墨烯片周围,增大石墨烯片间的排斥力,从而阻止石墨烯片在水中的团聚.

图1 (a)GO和GE分散液(浓度约为0.06 mg/mL)的Zeta电位值随pH变化的曲线; (b)制备的GE稳定分散液(GO∶N2H4=1∶295,质量比)的Zeta电位曲线 Zeta potential of GO and GE aqueous dispersion (at concentration of ~ 0.06 mg/mL) as a function of pH (a), and Zeta potential curve of stable aqueous GE dispersion (GO∶N2H4=1∶295,mass ratio) (b)

图1(a)显示随着水合肼含量增加,溶液的pH值逐渐增大,对于pH值在5.81—9.21范围内的GE水分散液,Zeta电位值低于一般稳定值(-30 mV),说明在不使用其他稳定剂的条件下也可以形成稳定的石墨烯水相分散液.图1(b)是 所制备的稳定的石墨烯水相分散液(氧化石墨与肼质量比是1∶295)的Zeta电位曲线.可以看出这条曲线在-32.5mV的Zeta电位位置形成很窄且强的曲线,可证明石墨烯水分散液的稳定性.这种GE水分散液能稳定存在六个月,不产生任何团聚物(见图2).

图2 在氧化石墨烯和肼的不同质量比例下得到的石墨烯水相分散液照片(放置3个月后) Photograph of graphene aqueous dispersions obtained from the different mixing rations of GO and hydrazine hydrate (after standing for three months) Top labels indicate the weight ratios of GO/N2H4

均匀的GE水分散液用紫外可见光光谱仪表征(图3),图中显示,GO悬浮液的吸收峰在230 nm处,而GE水分散液的峰值在265 nm处,有明显的红移,说明经过还原过程,形成了均匀的石墨烯分散液[25].

图3 GO和GE水分散液的紫外可见光吸收光谱 UV-Vis absorption spectra of GO and GE aqueous dispersion

图4所示是GE分散液中石墨烯片的TEM和AFM图像.图4(a)是高倍TEM电镜照片,说明分散液是由一些超薄石墨烯片组成的,并且能观测到典型的褶皱结构.选区电子衍射(SAED)测试显示有明显的6点对称.这些内外侧的衍射点与石墨的(1100)和(2110)晶面相对应.可以看出内侧点比外侧点更亮,说明被观测的石墨烯片是单层的[5,6,7].图4b 的AFM照片显示两个单层石墨烯片(约2 μm大小)重叠的样子.两箭头间的高度差是0.38 nm,表明制备的样品几乎是纯净的单层石墨烯片.黄色的带线可能是褶皱区域,与TEM的结果是一致的.

图4 GE分散液中石墨烯层的TEM(a)和AFM(b)图像 (a)中的插图是对于石墨烯层的选区电子衍射图 TEM (a) and AFM (b) images of graphene sheets from GE dispersion Insert of (a): selected area electron diffraction pattern (SAED) of the selected graphene sheet

图5是对GO和GE的高倍XPS分析,可见氧基功能团在GO中以C—O(碳氧单键,286.8 eV)、CO(羰基,288.0 eV)和O—CO(羧基,289.1 eV)的形式存在[25,26][图5(a)].图5(b)表明,GE中的碳氧键明显被还原,形成了C—C/CC(284.8 eV)的sp2杂化轨道.而GE中的C—N键(285.7 eV)说明还原过程中出现了与肼相关的基团.GO和GE的O1s光谱 [图5(c)、5(d)]进一步证实了因过量水合肼而引起的脱氧过程.O1s光谱中有位于532.5 eV (C—OH)、530.6 eV (OC—OH)、533.1 eV (H2O)、531.7 eV(CO) [27]的峰,这些峰的相对强度说明过量水合肼对于氧基功能团有明显的还原作用.

图5 GO和GE的高倍XPS分析:C1s [(a),(b)] 和O1s光谱图[(c),(d)] High-resolution XPS analysis for GO and GE: C1s [(a),(b)] and O1s [(c),(d)] spectra for GO and GE

图6是GCE和GE-GCE在含有0.01 mol/L[Fe (CN)6]3-/4-的0.1 mol/L KCl溶液中,以50 mV/s扫描获得的循环伏安曲线.GE-GCE电极的峰电流是GCE电极的1.6倍,峰间距基本相同,由此可以看出未加分散剂制备的石墨烯片显示出更加良好的电化学响应.

图6 GCE (虚线)和GE-GCE (实线)的循环伏安曲线电解质:含有0.01 mol/L [Fe (CN) 6]3-/4-的0.1 mol/L KCl溶液,扫描速率:50 mV/s CVs of bare GCE (dash line) and GE-GCE (solid line) in 0.1 mol/L KCl supporting electrolyte containing 0.01 mol/L [Fe (CN) 6]3-/4-,scan rate: 50 mV/s

图7中对比了GCE电极和GE-GCE电极分别在UA和AA溶液中的电化学响应.GE-GCE的响应峰较窄,而且氧化峰电流是GCE的1.5倍[图7(a)].此外,GE-GCE在 AA中的响应比GCE要强[图7(b)].未加分散剂所制备的石墨烯片在玻碳电极上对于UA和AA有明显响应,这是由于未加分散剂所得到的石墨烯片具有良好的载流子传递特性,而且石墨烯片本身的边界结构对于电化学响应起到有利的作用[10,11].当氧化石墨和肼的质量比是1∶295时,所得到的石墨烯水相分散液是最稳定的,因此由这种分散液所制备的石墨烯片更明显地显示出石墨烯片本身的特性.

图7 GCE电极(虚线)和GE-GCE电极(实线)分别在1 mmol/L UA (a)和1 mmol/L AA (b)中的循环伏安曲线 电解质:0.1 mol/L (pH 7.4) PBS溶液,扫描速率:50 mV/s CVs of 1 mmol/L UA (a) and 1mmol/L AA (b) based on bare GCE (dash line) and GE-GCE (solid line) in 0.1 mol/L (pH 7.4) PBS solution,scan rate: 50 mV/s
3 结论

在不添加何异质表面活性稳定剂的条件下,用过量肼(GO∶N2H4=1∶295,mass ratio)制备稳定的石墨烯水相分散液.所得到的石墨烯片厚度为0.38 nm,接近于理想单层石墨烯厚度.肼除了用作还原剂还原氧化石墨烯外,还环绕在疏水性石墨烯片之间,增大了排斥力阻止凝聚,提高了稳定性.所制备的石墨烯水相分散体系放置6个月后未出现任何凝聚物,可稳定存在.由石墨烯分散液所制备的石墨烯,具有良好的电化学性能.

致谢:

本研究得到中国国家自然科学基金(21175144)和中国留学基金委的资助,对此我们深表感谢.

参考文献
[1] Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum hall effect in graphene[J]. Science, 2007, 135(5817): 1379.
[2] zyilmaz B, Herrero P J, Efetov D, et al. Electronic transport in locally gated graphene nanoconstrictions[J]. Appl. Phys. Lett., 2007, 91(192107): 1-3.
[3] Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene[J]. Nature Nanotechnology, 2009, 4: 25-29.
[4] Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology, 2008, 3: 270-274.
[5] Liao K H, Mittal A, Bose S, et al. Aqueous only route toward graphene from graphite oxide[J]. ACS NANO, 2011, 5(2): 1253-1258.
[6] Li S S, Tu K H, Lin C C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells[J]. ACS NANO, 2010, 4(6): 3169-3174.
[7] Chen G L, Shau S M, Juang T Y, et al. Single-layered graphene oxide nanosheet/polyaniline hybrids fabricated through direct molecular exfoliation[J]. Langmuir, 2011, 27(23): 14563-14569.
[8] Hou S F, Kasner M L, Su S J, et al. Highly sensitive and selective dopamine biosensor fabricated with silanized graphene[J]. J. Phys. Chem. C, 2010, 114(35): 14915-14921.
[9] Dey R S, Raj C R. Development of an amperometric cholesterol biosensor based on graphene Pt nanoparticle hybrid material[J]. J. Phys. Chem. C, 2010, 114(49): 21427-21433.
[10] Artiles M S, Rout C S, Fisher T S. Graphene-based hybrid materials and devices for biosensing[J]. Adv. Drug Deliv. Rev, 2011, 63(14-15): 1352-1360.
[11] Kuilaa T, Bosea S, Khanraa P, et al. Recent advances in graphene-based biosensors[J]. Biosensors and Bioelectronics, 2011, 26(12): 4637-4648.
[12] Geim A K , Novoselov K S. The rise of grapheme[J]. Nature materials, 2007, 6:183-191.
[13] Zangwill A , Vvedensky D D. Novel growth mechanism of epitaxial graphene on metals[J]. Nano Lett., 2011, 11(5): 2092-2095.
[14] Li X S, Zhu Y W, Cai W W, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes[J]. Nano Lett., 2009, 9(12): 4359-4363.
[15] Li D, M ller M B, Gilje S, et al. Processable aqueous dispersion of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3:101-105.
[16] Liu S, Tian J Q, Wang L, et al. Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection[J]. Macromolecules, 2010, 43(23): 10078-10083.
[17] Jo K Y, Lee T M, Choi H J, et al. Stable aqueous dispersion of reduced graphene nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes[J]. Langmuir, 2011, 27(5): 2014-2018.
[18] Park S, Mohanty N, Suk J. W, et al. Biocompatible, robust free-standing paper composed of a tween/graphene composite[J]. Adv. Mater, 2010, 22(15): 1736.
[19] Green A A, Hersam M C. Solution phase production of graphene with controlled thickness via density differentiation[J]. Nano Lett., 2009, 9(12): 4031-4036.
[20] Xu Y X, Bai H, Lu G W, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. Am. Chem. Soc., 2008, 130(18): 5856-5857.
[21] Si Y C, Samulski E T. Synthesis of water soluble graphene[J]. Nano Lett., 2008, 8(6): 1679-1682.
[22] Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene[J]. Nature Nanotechnology, 2009, 4: 25-29.
[23] Pham V H, Cuong T V, Hur S H, et al. Fast and simple fabrication of a large transparent chemically -converted graphene film by spray-coating[J]. Carbon, 2010, 48(7): 1945-1951.
[24] Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chem. Mater., 1999, 11(3): 771-778.
[25] Kim T Y, Lee H W, Kim J E, et al. Synthesis of phase transferable graphene sheets using ionic liquid polymers[J]. ACS NANO, 2010, 4(3): 1612-1618.
[26] Liu J, Jeong H, Liu J, et al. Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents[J]. Carbon, 2010, 48(8): 2282-2289.
[27] Akhavan O. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets[J]. Carbon, 2010, 48(2): 509-519.