影像科学与光化学  2012, Vol. 30 Issue (4): 289-298   PDF (1670 KB)    
柔性透明石墨烯膜制备及导电性能研究
金成勋1,2,3, 李丹丹1,2, 余愿1, 徐涛1,2, 钱俊1,2, 只金芳1     
1. 中国科学院 理化技术研究所 光化学转换与功能材料重点实验室,北京 100190;
2. 中国科学院 研究生院,北京 100049;
3. 朝鲜国家科学院 电子材料研究所 功能材料实验室,平壤,朝鲜
摘要:本文通过液相化学还原和热还原联合作用制备了柔性透明导电石墨烯膜.阳极氧化铝(AAO)模板在制备过程中既作为抽滤的滤网,又作为热还原处理时支撑石墨烯膜的衬底,制成的柔性透明石墨烯膜对波长为540—840 nm的可见光透光率为80%,面电阻为850 Ω/平方,这与化学气相沉积法制备的石墨烯膜(280—770 Ω/平方)相近,而低于溶液法制备的石墨烯膜(通常是103—104 Ω/平方).
关键词石墨烯柔性导电膜     转移办法     热还原     阳极氧化铝模板     石墨烯    
A Hybrid Reduction Procedure for Preparing Flexible Transparent Graphene Films with Improved Electrical Properties
KIM Song-hun1,2,3, LI Dan-dan1,2, YU Yuan1, XU Tao1,2, QIAN Jun1,2, ZHI Jin-fang1     
1. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
3. Key Laboratory of Functional Materials, Institute of Electronic Material, Academy of Sciences, UnJong District, Pyongyang, DPR Korea
Abstract: A novel procedure for producing flexible transparent conductive Graphene films was reported. The synthetic procedure includes a solution-processed chemical reduction and an anodized aluminum oxide (AAO) membrane filter-assisted for thermal reduction. Final flexible transparent graphene films produced by this method exhibited the sheet resistance less than 850 Ω/square with 80% transmittance under visible-light irradiation (wavelengths: 540-840 nm). This sheet resistance value is close to that of the graphene films obtained from CVD method (280-770 Ω/square), and is much lower than that of the graphene films obtained from solution process (usually, in 103-104Ω/square).
Key words: flexible conductive graphene films     transferring methods     thermal reduction     AAO membrane filter     graphene    

石墨烯是一种由单层碳原子堆积而成的二维蜂窝状结构材料,近年来受到了极大关注.石墨烯因具有特殊的性能[1, 2]而广泛应用于电子产品中[3, 4].到目前为止,科学家探讨了不同的制备方法,包括机械剥离法[5]、晶体外延法[6]、化学气相沉积法(CVD)[7,8,9,10],以及溶液制备法[11, 12]等等.

传统的制备方法是化学气相沉积法,制成的石墨烯膜面电阻280—770 Ω/平方[7,8,9,10],透明度76%—90%,但此法生产成本较大.而溶液法制成的石墨烯膜具有较优良的性能,并被广泛报道[11,12,13].由于氧化石墨烯(Graphene Oxide,GO)容易在石英玻璃或者带氧化层的硅片上成膜,所以利用GO分散溶液形成GO膜之后,可通过肼蒸汽或者热还原来制备石墨烯膜[14,15,16,17].Becerril 等在石英基底上形成了GO膜,将GO膜在高温(1100°C)和高真空(10-5 Torr)下退火制备了热还原的氧化石墨烯膜(Thermal Reduced GO,TR-GO). TR-GO膜的面电阻是102—103 Ω/平方,透射率80 %[17].此外,还有将液相化学还原后在石英玻璃上形成的石墨烯膜,然后进行热还原,制备的透明石墨烯膜面电阻103 Ω/平方,透明度80% [18, 19].这些方法都是利用了石英基底来进行石墨烯膜的退火处 理,却未能将石墨烯膜从石英基底转移到目标基底上.Goki Eda等采用纤维素酯混合过滤膜将氧化石墨烯膜转移到目标基底上,然后进行肼蒸汽和低温热还原,得到面电阻为43 kΩ/平方,透光率为73%的石墨烯膜.以上方法,虽然能制备低成本的石墨烯膜,但是石墨烯膜的导电性能都相对较低,面电阻为103—104Ω/平方[14,15,16,17,18,19,20,21,22]

本文提出一种制备高导电柔性石墨烯膜的有效方法,这种方法由液相化学还原反应和阳极氧化铝(AAO)模板协助的热还原组成.此法制备的面电阻小于850 Ω/平方,对波长为540—840 nm的可见光透光率为80%,这与CVD法制备的石墨烯膜面电阻值相近,而低于溶液法制备的石墨烯膜. 1 实验部分 1.1 氧化石墨烯(GO)的水分散系的制备

氧化石墨烯由纯净的天然石墨粉(Sigma-Aldrich 公司) 经氧化制备[23] .所得的氧化石墨烯首先用2 mol/L的盐酸除去金属离子,去离子水洗净,然后用140 mL的去离子水溶解,制成0.57 mg/mL的悬浮液.制得的GO悬浮液经超声波处理器处理30 min,再用离心机(速率10000 rpm)进行15 min的离心处理,除去未氧化剥离成片的石墨,最后制得均匀的0.5 mg/mL的黄褐色GO水分散体系. 1.2 化学还原石墨烯(Chemical Reduced Graphene,CR-GE)水分散系的制备

CR-GE水分散体系是通过简单的化学还原反应制备的.水合肼作为还原剂,不添加其他任何分散剂.将10 mL质量分数为80%的水合肼与70 mL浓度为0.5 mg/mL的GO混合,然后油浴加热,恒温70 ℃下,搅拌12 h,最终制得CR-GE悬浮液.这种悬浮液可以长期稳定存放,保存6个月未发现团聚现象.

为了比较AFM图像,将1 mL质量分数为80%的水合肼、70 mL浓度为0.5 mg/mL的GO、25.2 mg聚乙烯吡咯烷酮(Polyvinylpyrrolidone,PVP,Mw=360000,Sigma-Aldrich 公司)混合,然后油浴加热,恒温80 ℃,搅拌12 h,最终制得CR-GE(PVP)悬浮液. 1.3 柔性透明石墨烯膜(Flexible Transparent Graphene Films,FTGFs)的制备

(1)将不同浓度的CR-GE分散液各取1 mL,分别滴加在多孔的阳极氧化铝(AAO)模板上(直径为13 mm,孔径0.02 μm;Whatman),经抽滤制备成CR-GE膜.为了比较热-化学共还原石墨烯膜(Chemical and Thermal Reduced Graphene,CTR-GE)和热还原GO膜(Thermal Reduced GO film,TR-GO)的区别,两种GO分散体系都用同样方法抽滤成膜.

(2)70 ℃下真空干燥3 h,将覆有CR-GE和GO膜的AAO滤膜分别夹在两个Si片中固定,以避免在后续热处理过程中AAO模板的热变形导致石墨烯的损失.再将Si片放在石英管式炉中,通氩气30 min后,开始加热还原.热处理过程如下:在流速为30 mL/min的超纯氩气中,以2 ℃/min的速度从室温加热到200 ℃;然后在流速为50 mL/min的氩气中,以20 ℃/min的速度加热到800 ℃;之后在流速为100 mL/min的纯氩气中,800 °C恒温5 h;最后在流速为30 mL/min的氩气中,从800 °C自然冷却至室温.

(3)将1 mg/mL聚甲基丙烯酸甲酯(PMMA)溶液旋涂在热处理后的AAO滤膜上,进行保护.

(4)将AAO滤膜浸泡在5 mol/L的NaOH溶液中,使AAO完全溶解,制成由PMMA保护的自支持的石墨烯膜(Free-standing graphene film),用去离子水洗净.

(5)将由PMMA保护的自支持的石墨烯膜转移到PET基底上,在35 ℃下用1 kg的重物加压12 h,移走重物,用CHCl3有机溶剂溶解掉PMMA,再用酒精和去离子水洗净,氮气气氛干燥,最终制成FTGFs.

FTGFs制备的详细过程见图1.

图1 柔性透明石墨烯膜的制备过程 Production process of FTGFs
1.4 仪器设备

红外光谱仪(Varian 3100-FT-IR,美国)测试样品中含氧基团的红外光谱.样品的结构用X射线衍射仪表征(XD-2,Cu/Kα,5°—70°; Purkinje General Instrument Co.,Ltd).XPS(扫描X射线微探针,PHI Quantera,ULVAC-PHI,Inc.)表征样品上含氧官能团的特征.AFM图像由原子力学显微镜(Veeco.美国)获得.透射电子显微镜TEM(Philips Tec nai G20)图像来表征CR-GE样品,UV-Vis分光仪(Varian Cry5000)用来测试FTGFs对330 —860 nm可见光的透射率. FTGFs的面电阻是用由四探针电阻仪 (RTS-2)测量的,探针间距是5 mm. 2 结果与讨论

图2展示了CR-GE 分散系中石墨烯片的AFM图像.从两种石墨烯分散液得到的AFM图像可以看出:没加分散剂的石墨烯片层间距离较小 (图2a),而加入分散剂(PVP)石墨烯片之间层间距离(图2b)明显增加.

图2 (a)没加分散剂和(b)加分散剂(聚乙烯吡咯烷酮,PVP)的石墨烯片AFM图像 AFM images (top),taping mode section analyses (low) of the surfactant-free (a) and PVP-assisted graphene sheets (b)

图3展示了未加分散剂石墨烯分散液的大范围TEM图像,说明分散系是由一些超薄石墨烯片组成的,并且能观测到典型的褶皱结构.

图3 没加分散剂石墨烯分散液的TEM图像 TEM image obtained from the surfactant-free CR-GE dispersion

图4是石墨烯、GO、CR-GE和CTR-GE样品的红外光谱图.在GO红外光谱中,可以观察到一些伸缩振动的吸收峰,如CO(1725 cm-1)、芳香环CC(1621 cm-1)、羧基C—OH(1382 cm-1)、环氧乙醚C—O(1231 cm-1)、烷氧基C—O (1027 cm-1)[31, 32],这说明在氧化反应过程中,GO上存在很多含氧官能团.与GO相比,肼还原的CR-GE膜的红外光谱图中含氧官能团的吸收峰强度减弱,这说明在化学还原反应中,大多数基团都被移除了,同时,芳香环CC(1621 cm-1)的吸收峰变窄.经过进一步热还原处理的CTR-GE,芳香环CC(1621 cm-1)峰值变强,C—O振动峰几乎消失,这说明退火处理能进一步消除石墨烯中含氧官能团.

图4 石墨烯、GO、CR-GE和CTR-GE样品的红外光谱(FT-IR)图 FT-IR spectra for Graphite,GO,HR-GE and TR-GE samples

图5是对CR-GE和CTR-GE膜的高倍XPS分析,包括C1s(a,b) 和O1s (c,d)的光谱图.图4a说明CR-GE中含C官能团以C=C/C—C (sp2轨道和sp3轨道,284.8 eV)、C—OH (羟基/环氧基,286.8 eV),CO (羰基,288.0eV)和O—CO (羧基,289.1 eV)[31, 27]的形式存在.虽然是以水合肼作为还原剂进行反应的,但是可以看出仍有羟基/环氧基和羧基存在,说明单一的化学还原除去GO含氧官能团的效果不是很好.此外,还有由水合肼带入的C—N(285.7 eV)[27][图 5(a)].AAO上的CR-GE膜经过进一步热还原处理后,包括羟基/环氧基和羧基在内的官能团明显减少,甚至消失[图5(b)].O1s的XPS光谱图由大量位于532.5 eV (C—OH)、530.6 eV (OC—OH)、533.1 eV (H2O)、531.7 eV(CO)[37, 38]的峰值组成[图5(c)、(d)].如图5(c)、(d)所显示,通过热还原过程,含氧官能团明显减少了.XPS结果说明通过化学还原与热还原的联合作用,可以更有效地去除石墨烯中含氧官能团,得到质量更好的石墨烯膜.

图5 对于CR-GE和CTR-GE膜的高倍XPS分析,包括C1s[(a),(b)] 和O1s[(c),(d)]的光谱图 High-resolution XPS analysis for CR-GE,CTR-GE films: C1s spectra [(a),(b)] and O1s spectra[(c),(d)]

图6(a)是石墨、GO、CR-GE、CTR-GE样品的XRD图,如图所示,石墨的XRD图中在26.47°处有尖峰,这与面间距为0.337 nm的(002)晶面相对应[27].GO中(002)晶面衍射峰在12.08°处,这是由氧化石墨面间距的增加导致的,说明含氧官能团和水分子已进入到石墨层间[28].CR-GE的衍射峰位于24.5°,这与0.36—0.37 nm的面间距对应[29],说明氧化石墨层的多数含氧官能团被水合肼还原了,同时,峰形变宽表明晶格的长程有序度降低.CTR-GE中位于26°左右的峰值,面间距进一步减小,说明还原程度增加,同时,峰形更加尖锐说明晶格有序度增大.XRD的结果进一步说明了通过化学还原和热还原的联合作用,可以得到高质量的石墨烯膜.图6(b)显示的是按照1.3(2)的热处理条件退火之后AAO模板的XRD图,退火温度高于700 ℃时,非晶态的AAO模板开始结晶,温度越高,结晶化程度越高,温度超过850℃,大多数非晶态的AAO都转化成晶体,并且不溶于5 mol/L的NaOH溶液.在800 ℃,5 h退火之后大多数AAO仍然以非晶态存在,并能溶解于NaOH溶液,而且其上支撑CR-GE膜也完全被热还原了.

图6 (a)石墨、GO、CR-GE、CTR-GE样品的XRD图 (b)热处理之后AAO滤膜的XRD图 (a) XRD patterns of Graphite,GO,CR-GE,CTR-GE samples (b) XRD patterns of amorphous AAO membrane filters after heating treatment

图7(a)和7(b)显示的是CTR-GE膜的AFM图像.将自支撑的CTR-GE膜(free-standing CTR-GE film)转移到SiO2/Si片上进行AFM观察,可知:19 mg/L的分散液制成的CTR-GE膜厚度约为1.2 nm,由3—4层石墨烯片组成(单层石墨烯厚为0.34 nm[30, 31]).而由125 mg/L的分散液制备的膜厚度是7 nm,由20—21层石墨烯片组成.图7(c)是分散液浓度、膜厚度、膜层数的关系图.AFM实验表明,石墨烯膜厚度或者膜层数是随着过滤浓度的增加而增加.

图7 由不同浓度CR-GE分散液制备的CTR-GE膜的AFM图像 (a)19 mg/L;(b) 125mg/L,(b)的插图:膜的细节图(1 μm×1 μm); (c)分散液的初始浓度与最终制得的膜厚度和层数的关系图 AFM images of the as-prepared CTR-GE films obtained from different concentration of CR-GE dispersion (a) 19 mg/L,(b) 125mg/L,Inset (b): a detail image of this film (in 1 μm×1 μm field) (c) Initial filtering concentration vs film thickness and number layer of CTR-GE films

将自支撑的石墨烯膜转移到柔性聚对苯二甲酸乙二醇酯(PET)基底上,并进行表征.聚苯二甲酸乙二醇酯(PET)薄膜分别在丙酮、乙醇和去离子水中超声处理5 min.图8显示了这些柔性膜的光电性能,插图显示PET基底上被转移的CTR-GE柔性膜.如图8(a)所示,在照射波长540—840 nm,石墨烯膜的透明度几乎没变化.以107 mg/L、125 mg/L、139 mg/L的初始过滤浓度所制备的CTR-GE膜的厚度分别为5 nm、7 nm、 8 nm[见图7(c)],柔性CTR-GE膜的透光率分别为69.5%、79.5%、87.6%.而且可以看出CTR-GE膜的透明度稍低于CR-GE膜,这表明退火处理中CTR-GE膜的石墨化程度增加.图8(b)是CR-GE/PET和CTR-GE/PET石墨烯膜的面电阻对比图,插图显示透明度在60%—88%范围的柔性CTR-GE/PET膜的面电阻变化.可以看出,透明度80%的柔性CTR-GE/PET膜的面电阻小于850 Ω/平方.这与CVD法制备的膜(280—770 Ω/平方)[7,8,9,10]相近,低于溶液法制备的膜(通常是103—104 Ω/平方)[14,15,16,17,18,19,20,21,22]

图8 (a) FTGFs的透明度变化(照射波长:330—860 nm),插图是PET上的柔性CTR-GE膜 (b) 不同FTGFs的面电阻与透明度的关系,插图是透明度为60%—88%的柔性CTR-GE膜的面电阻 (a) Transmittance change of FTGFs (irradiation wavelength: 330—860 nm) Inset shows flexible CTR-GE film on PET (b) Sheet resistance vs transmittance for different FTGFs Inset shows the sheet resistance of flexible CTR-GE film over 60%—88% transmittances
3 结论

通过化学还原和AAO模板协助的热还原联合作用,制备出柔性透明的导电石墨烯膜,该石墨烯膜对波长为540—840 nm的可见光透光率为80%,面电阻小于850 Ω/平方.用XPS、Raman、XRD表征,结果表明用联合还原方法制备的石墨烯膜是高质量的.该方法在柔性石墨烯膜的制备和石墨烯纳米器件领域有很好的应用前景.

致谢:

本研究得到中国国家自然科学基金(21175144)和中国留学基金委的资助,对此我们深表感谢.

参考文献
[1] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Room-temperature quantum hall effect in graphene[J]. Science, 2007, 135(5817): 1379.
[2] zyilmaz B, Pablo J H, Efetov D, Kim P. Electronic transport in locally gated graphene nanoconstrictions[J]. Appl. Phys. Lett., 2007, 91(192107): 1-3.
[3] Chen C Y, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Stormer H L, Heinz T F, Hone J.Current saturation in zero-bandgap, topgated graphene field-effect transistors[J]. Nature Nanotechnology, 2009, 4: 861-867.
[4] zyilmaz B, Pablo J H, Efetov D, Abanin D A, Levitov L S, Kim.P. Electronic transport and quantum hall effect in bipolar graphene p-n-p junctions[J]. Phys. Rev. Lett., 2007, 99(166804):1-4.
[5] Geim A K, Novoselov K S. The rise of grapheme[J]. Nature materials, 2007, 6: 183-191.
[6] Lee D S, Riedl C, Krauss B, Klitzing K, Starke U, Smet J H. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2[J]. Nano Lett., 2008, 8(12): 4320-4325.
[7] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L, Ruoff R S. Transfer of large-area graphene films for high-performance transparent conductive electrodes[J]. Nano Lett., 2009, 9(12): 4359-4363.
[8] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457: 706-709.
[9] Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J. Large-scale arrays of single-layer graphene resonators[J]. Nano Lett., 2009, 9(8): 3087.
[10] Chen J H, Jang C, Xiao S. Ishigami D M, Fuhrer M S, Graphene N. Electronic and photonic properties and devices[J]. Nanotechnol., 2008, 3: 206.
[11] Liao K H, Mittal A, Bose S, Leighton C, Mkhoyan K A, Macosko C W. Aqueous only route toward graphene from graphite oxide[J]. ACS Nano, 2011, 5(2): 1253-1258.
[12] Li S S, Tu K H, Lin C C, Chen C W, Chhowalla M. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells[J]. ACS Nano, 2010, 4(6):3169-3174.
[13] Chen G L, Shau S M, Juang T Y, Lee R H, Chen C P, Suen S Y, Jeng R J. Single-layered graphene oxide nanosheet/polyaniline hybrids fabricated through direct molecular exfoliation[J]. Langmuir, 2011, 27: 14563-14569
[14] Li X L, Zhang G Y, Bai X D, Sun X M, Wang X R, Wang E G, Dai H J. Highly conducting graphene sheets and langmuir–blodgett films[J]. Nature Nanotechnology, 2008, 3: 538-542.
[15] Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology, 2008, 3: 270-274.
[16] Yamaguchi H, Eda G, Mattevi C, Kim H K, Chhowalla M. Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films[J]. ACS Nano, 2010, 4(1): 524-528.
[17] Becerril H A, Mao J, Liu Z F, Stoltenberg R M, Bao Z N, Chen Y S. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS Nano, 2009, 2(3): 463-470.
[18] Wang S J, Geng Yan, Zheng Q B, Kim J K. Fabrication of highly conducting and transparent graphene films[J]. Carbon, 2010, 48: 1815-1823.
[19] Geng J X, Liu L J, Yang S B, Youn S C, Kim D W, Lee J S, Jung H T. A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension[J]. J. Phys. Chem.,C, 2010, 114(34): 14433-14440.
[20] De S, King P J, Lotya M, Doherty E. M, Coleman J N. Chemical sensors based on randomLy stacked graphene flakes[J]. Small, 2009, 6(3): 458.
[21] Zhu Y W, Cai W W, Piner R D, Ruoff R. S. Transparent self-assembled films of reduced graphene oxide platelets[J].Appl. Phys. Lett., 2009, 95: 103104.
[22] Blake P, Brimicombe P. D, Nair R. R, Geim A K, Novoselov K S. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Nano Lett., 2008, 8(6): 1704.
[23] Kovtyukhova N I, Ollivier P J, Martin B R, Thomas E. Mallouk, Gorchinskiy A D. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chem. Mater., 1999, 11(3): 771-778.
[24] Chen W F, Yan L F, Bangal P. R. Chemical reduction of graphene oxide to graphene by sulfur-containing compounds[J]. J. Phys. Chem.,C, 2010, 114(47): 19885-19890.
[25] Paredes J. Rodil I S, Fernandez P S, A. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide[J]. Langmuir, 2009, 25(10) : 5957-5968.
[26] Su C Y, Xu Y P, Zhang W J, Zhao J W, Tang X H, Li L J. Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers[J]. Chem. Mater., 2009, 21(23): 5674-5680.
[27] Liu J, Jeong H, Liu J, Lee K, Park JY, Ahn YH, et al. Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents[J]. Carbon, 2010, 48(8): 2282-2289.
[28] Szabo T, Anna Szeri, Imre Dekany. Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer[J]. Carbon, 2005, 43:87-94.
[29] Park S J, An J H, Potts J R, Velamakanni A, Murali S, Ruoff R S. Hydrazine-reduction of graphite- and graphene oxide[J]. Carbon, 2011, 49: 3019-3023.
[30] McAllister M J,et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chem. Mater., 2007, 19: 4396-4404.
[31] Stankovich S, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliatedgraphite oxide[J]. Carbon, 2007, 45: 1558-1565.