影像科学与光化学  2017, Vol. 35 Issue (4): 337-348   PDF    
仿生光响应智能纳米孔道的构筑及应用
肖凯, 闻利平, 江雷     
中国科学院 理化技术研究所 仿生材料与界面科学重点实验室, 北京 100190
摘要: 在生命体中,很多生物过程都和光息息相关,例如光合作用过程和视觉感受系统等,而这些过程大都由生命体中对光敏感的蛋白质离子通道主导。近年来,受这些蛋白质离子通道的启发,具有光响应性的仿生智能固态纳米孔道广受关注。光响应纳米孔道具有灵活的空间和时间可控性,除了和生命过程息息相关,还在能源存储与转化、药物可控释放和分离等方面显示了巨大的应用前景。本综述主要从材料属性出发阐述光响应仿生智能纳米孔道的构筑和分类,并对其应用进行总结和展望。
关键词: 仿生     光响应     纳米孔道     离子通道     离子输运    
Construction and Application of Biomimetic Photoresponsive Smart Nanochannels
XIAO Kai, WEN Liping, JIANG Lei     
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
*Corresponding author: WEN Liping, E-mail: wen@mail.ipc.ac.cn; JIANG Lei, E-mail: jianglei@iccas.ac.cn
Abstract: In living organisms, many biological processes are inextricably linked with light, such as the photosynthesis systems and rhodopsin. Hence, construction of light-sensitive biomimetic nanochannels, which can realize the functions of cells and other membrane structures with high degree of spatial and temporal control, is particularly attractive and challenging. In this review, we mainly summarize the construction and applications of photoresponsive nanochannels on the basis of various photoresponsive materials. Furthermore, the review highlights some of the most recent applications of photoresponsive nanochannels in separation, energy conversion and storage, drug delivery and so on.
Key words: biomimetic     photoresponsive     nanochannel     ion channel     ion transport    
1 前言

离子通道是镶嵌在细胞膜中连接细胞内部和外部世界的沟通的桥梁,通过控制细胞内外的离子传输,可以实现不同的生命功能[1-4]。然而离子通道只有镶嵌在磷脂双分子层中才能实现离子的选择性、离子整流性和离子泵的性质[4, 5],由于磷脂双分子层在体外环境中十分脆弱,使离子通道很难在生命体外得到应用。而受自然界启发,通过各种材料构筑的仿生智能固态纳米孔道可以很好地解决天然通道不稳定的问题[6, 7],进而可以应用到纳米流体、能源存储与转换和生物传感器等领域[8-13]

近年来,得益于材料和技术的发展,基于不同方法和材料的多种仿生智能固态纳米孔道已经被成功构筑[14-17]。2001年,哈佛大学的Golovchenko教授报道了基于低能离子束方法制备单纳米孔的技术[18]。2011年,剑桥大学卡文迪许实验室的Keyser教授小组第一次将单链DNA分子折叠形成三维的DNA锥形纳米孔道[19],这种DNA折叠形成的纳米孔道最窄处仅有7.5 nm。2014年,犹他大学的White教授和剑桥大学的Keyser教授发展了一种通过电化学刻蚀方法制备玻璃纳米孔道的方法[20-23]。同时为了增加纳米孔道的功能,科学家对其进行功能化修饰或者制备复合膜,将各种具有单响应、双响应及多响应特性的功能小分子、聚合物、生物分子及纳米颗粒等功能材料修饰到孔道内部或者表面,从而赋予纳米孔道更加丰富的功能和性质[17]。如江雷课题组通过原子转移自由基聚合将温度响应性的聚(甲基丙烯酸苄酯)分子刷引入到氧化铝纳米孔道内,实现了温度控制的离子门控开关[24]。阿根廷的Azzaroni教授小组通过静电自组装将pH响应的聚4-乙烯基吡啶分子刷修饰到PET聚合物孔道内实现了pH响应的离子门控开关[25]。2014年,江雷及其合作者通过静电吸附,将光和pH多响应的8-羟基芘-1, 3, 6-三磺酸三钠盐(HPTS)修饰到纳米孔道内实现了光响应、pH响应、光和pH协同响应的离子门控开关[26]。另外,无电沉积、离子溅射沉积、电子束蒸发等技术也被广泛用于将无机金属引入到孔道内,进而实现响应性分子在孔道内的自组装[27]。近年来通过这种化学修饰或者物理接枝的方法,多种响应性分子,如pH响应[28, 29]、离子(钾离子、锌离子、汞离子、铁离子等)响应[30-33]、温度响应[34]、光响应[35-37]、压力响应[38]等都被成功地用来功能化纳米孔道。

在众多多功能、多响应的仿生智能固态纳米孔道中,光响应纳米孔道由于可以快速地在时间和空间上精确控制智能纳米孔道的开/关功能,并且可以最大程度地减小对研究主体的潜在伤害,近年来备受关注。构筑光响应纳米孔道的方法大致分为两类,一类是直接将光响应材料加工成纳米通道,实现光控离子传输功能[39, 40];然而,用于构筑固态纳米通道的材料往往不具有光响应的性质,因此,科学家发展出另一类方法,将固态纳米通道和光响应性分子结合,借助于光响应性分子的特性,实现智能光响应纳米通道的构筑。如通过将光响应的螺吡喃分子及其衍生物、偶氮苯及其衍生物、卟啉分子及其衍生物等修饰到固态纳米孔道内,实现了多种光控离子传输的功能[41-43]。仿生智能光响应纳米孔道的制备,按照材料属性可以分为以下4类:无机光响应纳米孔道、有机光响应纳米孔道、聚合物光响应纳米孔道和在光响应环境中的纳米孔道(图 1)。

图 1 光响应智能纳米孔道的构筑分类及应用 Fig.1 Different strategies for constructing photoresponsive nanochannels and the applications
2 光响应智能纳米孔道的构筑和分类 2.1 无机光响应纳米孔道

无机光响应智能纳米孔道主要是基于无机光响应材料制备的纳米孔道,例如二氧化钛(TiO2)[44, 45]。最近,北京航空航天大学的翟锦教授和刘兆阅教授等报道了自组装的二氧化钛纳米孔道阵列(图 2a)[40, 46]。该二氧化钛纳米孔道阵列是通过电化学阳极氧化制得,并表现出光控离子传输的功能。为了保持足够的自支撑机械强度,该纳米孔道阵列的厚度维持在23 μm。在阳极氧化过程中接触电极的一端称为顶端,具有较大的孔径,约为86.5 nm;和钛金属接触的一端称为底端,具有较小的孔径,约为29.8 nm。他们通过监测离子电流,发现这种非对称的纳米孔道结构在波长为365 nm的紫外光照和去光照的情况下,表现出不同的离子输运性质。当紫外光照的功率为11.5 mW·cm-2时,在+0.2 V外加电压下,离子电流相比无光照条件下减小约68 nA; 在-0.2 V外加电压下,离子电流相对于无光照条件下增加大约62 nA。这种光响应的离子输运性质主要是因为二氧化钛在光照条件下会发生电荷分离,从而使非对称的孔道表面带电荷,进而产生双电层和非对称的离子输运性质。随后,他们将该二氧化钛纳米孔阵列和氧化铝纳米孔道阵列相结合,构筑了复合的光响应纳米孔道体系(TiO2/Al2O3 heterogeneous nanochannels)[39],并通过改变孔道内的浸润性和表面电荷性质实现了离子门控的性质(图 2b)。在该体系中,氧化铝纳米孔道阵列的平均孔径为216 nm,二氧化钛纳米孔阵列的平均孔径为3.8 nm。未进行功能化修饰时,孔道具亲水性,表现为打开状态;通过将三氯十八烷基硅烷(OTS)分子修饰到孔道内,改变孔道的浸润性,孔道表现为关闭状态。当用紫外光照射时,二氧化钛作为催化剂可以分解OTS,在孔道表面留下带负电的羧基(Si-CnH2nCOO-, n=0~17),从而再次打开离子孔道。

图 2 无机光响应纳米孔道 (a)光响应二氧化钛纳米孔道[40];(b)光响应二氧化钛/氧化铝复合纳米孔道[39] Fig.2 Organic photoresponsive nanochannels (a) TiO2 photoresponsive nanochannels[40]; (b) TiO2/Al2O3 heterogeneous photoresponsive nanochannels[39]
2.2 有机光响应纳米孔道

有机光响应纳米孔道实质上是指有机光响应小分子功能化的仿生智能纳米孔道。不同结构的光响应分子可以作为光感受器来制备性质优异的光响应器件[47, 48]。同样,光响应有机分子和仿生智能纳米孔道相结合,可以用来实现有机光响应纳米孔道的制备。这些有机分子,包括二芳基乙烯类(Diarylethenes)、螺吡喃类(Spiropyrans)、偶氮苯类(Azobenzene)、俘精酸酐类(Fulgide)、二苯乙烯类(Stilbenes)等,在光照条件下会发生结构或者构型的变化[49-54],从而改变孔道内的表面电荷性质和浸润性,实现光响应可控离子传输。2006年,Smirnov研究组[55]报道了螺吡喃修饰的光控水通道门控。这种光响应智能门控是主要通过光照前后螺吡喃构型变化,进而改变孔道内的浸润性而实现的。如图 3a所示,在光照前,螺吡喃处于热稳定的疏水状态,孔道很难被浸润,表现为关闭状态;光照之后,螺吡喃结构改变,孔道内壁处于亲水状态,表现为打开状态。最近,江雷课题组通过静电自组装的方式,在孔道内修饰光和pH双响应的8-羟基芘-1, 3, 6-三磺酸钠(HPTS)分子,实现了光和pH双响应的离子门控开关[26]。如图 3b所示,HPTS通过两步法修饰到孔道内:由于HPTS在光照或者高pH条件下带高密度负电荷,在去光照或者低pH条件下带低密度负电荷或者不带电荷,所以可以通过控制光照或者pH条件改变纳米孔道内壁电荷性质,实现可控性离子门控。和其他响应性门控相比,该离子门控开关具有快速响应性,并且在光和pH的双重刺激下,可以实现最大程度的门控开关性质。

图 3 有机小分子修饰的光响应纳米孔道 (a)修饰螺吡喃的光响应纳米孔道[55];(b)修饰HPTS分子的多响应离子门控[26] Fig.3 Photoresponsive nanochannels (a) the reversible wettability of the nanochannel modified with spiropyran[55]; (b) multi-stimuli-response ionic gate based on single nanochannel modified with hydroxypyrene derivation[26]
2.3 聚合物光响应纳米孔道

过去几十年中,光响应聚合物的设计、合成和应用吸引了科学家的广泛关注并得到了极大的发展。这些光响应聚合物在光照条件下可以发生结构和构象的改变,从而表现出优异的宏观性质[56-60]。光响应聚合物主要分为以下4类:光响应结构可逆聚合物,光响应可逆交联聚合物,光响应不可逆的支链分离聚合物和光响应不可逆的主链分解聚合物。借助于聚合物的这些光响应功能,可以将其直接修饰到孔道内制备光响应纳米孔道。另外,具有微相分离性质的光响应嵌段聚合物也可以直接自组装生成纳米孔道,这类嵌段聚合物称为液晶嵌段聚合物(liquid crystalline block copolymers, LCBCs)[61-63]。2006年,Ikeda研究组[63]报道了通过原子转移自由基聚合(ATRP)合成含聚环氧乙烷PEO的两亲性液晶嵌段聚合物,该嵌段聚合物在室温条件下通过相分离可以形成尺寸为7 nm的纳米孔道(图 4a)。该液晶聚合物膜还表现出光响应的性质,通过功率为100 mW·cm-2的488 nm波长的光照射后,孔道的结构会发生变化(如图 4b所示),照射前后,孔道由垂直方向变成水平方向。根据液晶聚合物孔道的这种性质,2014年Kato研究组[64]通过偶氮苯类聚合物孔道实现了光控离子传输。如图 4c所示是聚合物的分子结构,其中含有偶氮苯基团。该聚合物在光照前后二维孔道的方向会发生改变,因此展现出各向异性的离子输运性质。并且两种方向的离子通导也不一样,在水平方向上的孔道的通导约为1×10-5 S·cm-1,但是在垂直方向上的离子通导减小到1×10-6 S·cm-1。和其他光响应智能孔道相比,聚合物光响应纳米结构制备简单,易于控制,可以大规模制备,但是目前还很少用来控制离子传输。

图 4 聚合物自组装形成的光响应纳米孔道 (a)聚合物的分子式和经相分离形成的纳米孔道[63];(b)光照示意图和有无光照条件下的孔道结构[63];(c)光响应聚合物分子结构[64];(d)光诱导液晶薄膜孔道结构的改变和对应的离子输运示意图[64] Fig.4 Photoresponsive nanochannels fabricated by polymer (a) chemical structure of the polymers and microphase-separated of the photoinduced alignment of nanocylinders[63]; (b) scheme of LC alignment and microphase-separated structures in the irradiated and unirradiated area of the block copolymer films[63]; (c) molecular structure of photoresponsive compound[64]; (d) schematic representation of the photo-induced reorientation of liquid-crystalline thin films and the anisotropic ion transportation[64]
2.4 在光响应环境中的纳米孔道

除了借助光响应材料制备光响应智能纳米孔道或者将光响应分子修饰到孔道内实现光响应离子输运性质之外,还可以将仿生智能纳米孔道置于光响应环境中实现光控离子输运性质及应用。如图 5a所示,江雷课题组将C4-DNA修饰到经化学径迹刻蚀方法制备的锥形纳米孔道内,然后将修饰后的孔道体系置于浓度为0.24 mmol·L-1的孔雀石绿(Malachite green carbinol base)水溶液中。孔雀石绿是一种光响应分子,在光照条件下会释放OH-使溶液的pH值增加至7.5,而在黑暗环境中,又可以重新结合OH-使溶液pH减小到5.4。C4-DNA在pH 7.5的条件下是舒展的单链状态,不会影响离子传输;而在pH 5.4的条件下是折叠状态,会阻塞孔道。借助这种性质,作者实现了可循环多次的离子门控[65]。如图 5b所示,孔道在黑暗条件下为关闭状态,离子电流只有0.6 nA,而在光照条件下,孔道打开,离子电流增加到约1.0 nA。这种开关性质循环多次后,离子电流并无明显衰减,证明了其稳定性。另外,受光合作用过程的启发,北京航空航天大学的翟锦教授小组[66]通过将仿生智能纳米孔道置于光合系统Ⅱ(PSⅡ)复合物体系中,可以实现光诱导的光电转换。如图 5c所示,PSⅡ复合物是植物中广泛存在的光电转换材料,在光照下会将水氧化成氧气并产生质子,由于纳米孔道两侧具有浓度差,质子会沿着孔道单方向输运,从而在外电路中就可以收集离子电流。图 5d所示是有/无PSⅡ复合物时,光照前后离子电流的变化。在PSⅡ复合物存在时,光照会产生约0.2 nA的离子电流,停止光照,离子电流消失。而在无PSⅡ复合物存在时,有无光照均不会产生离子电流。

图 5 在光响应环境中的纳米孔道 (a)修饰了G4-DNA的光诱导智能纳米孔道示意图[65];(b)在光响应环境中,光照前后离子电流变化[65];(c)在PSⅡ复合物环境中,基于纳米孔道的光诱导光电转换体系[66];(d)有/无PSⅡ复合物,光照前后离子电流变化[66] Fig.5 Nanochannels in photoresponsive environment (a) mechanism of the photo-induced smart nanochannel modified with C4-DNA system[65]; (b) the ionic current before nd after UV light irradiation[65]; (c) the light-driven ionic potential system based on nanochannel in PSⅡ particles environment[66]; (d) the photocurrent of the photoelect rical conversion system with (solid line)/without (dotted line) PS Ⅱ in cyclic 'ON-OFF' illumination[66]
3 光响应纳米孔道的应用

光响应仿生智能纳米孔道具有和生物光响应离子孔道一样优异的光控离子传输性能,已经在很多领域展现其巨大的应用前景[67-69]。如2013年,江雷课题组[70]报道了基于光响应纳米孔道的光电转换体系(图 6a)。作者将DNA修饰的仿生智能纳米孔道置于光响应溶液中,该溶液中的光响应分子可以做为光生质子泵在光照条件下产生质子,并在非光照条件下吸收质子。而孔道中的DNA可以控制质子流的方向和大小,从而实现光电转换。如图 6a所示,在光照条件下,可以实现最大58.8 mV的扩散电势和6.05 μA·cm-2的电流密度。2015年,Fujiwara等[71]报道了将光响应智能纳米孔道用于海水脱盐的过程。他们将螺吡喃衍生物修饰到氧化铝纳米孔道内,修饰后的氧化铝孔道薄膜在黑暗条件下表现为疏水状态,水不能通过纳米孔道;当用300 nm~600 nm的光照射纳米孔道10 min后,孔道一侧的水滴完全消失,在另外一侧可以收集到体积接近的水。当用质量分数为3.5%的NaCl水溶液测试后发现,穿过孔道至另外一侧的盐浓度可以降到0.01%,表明其优异的光响应海水脱盐过程。最近,闻利平课题组将光响应DNA修饰到仿生智能孔道内,实现了光控药物释放[72]。该实验设计的光响应DNA中含有偶氮苯基团,在紫外光的照射下,偶氮苯呈顺式结构,DNA表现为单链结构,占用空间较大,药物输运受阻;在可见光的照射下,偶氮苯呈反式结构,DNA相应地由单链结构折叠成发卡结构,占用空间较小,药物可自由通过智能孔道。

图 6 光响应智能纳米孔道的应用 (a)光响应智能纳米孔道用于能源转换[70];(b)光响应智能纳米孔道用于海水脱盐[71];(c)光响应智能纳米孔道用于可控释放[72] Fig.6 The application of photoresponsive smart nanochannels (a) scheme of the photoelectric conversion system[70]; (b) water desalination process based on photoresponsive smart nanochannels[71]; (c) scheme illustrating transport through the photoresponsive smart nanochannels[72]
4 结论

智能材料的构想来源于生物,生物体在其演化过程中经过长期的自然选择,形成了一套和其功能相适应、能够对外界环境以及自身需求做出响应的智能体系[73-76]。对这些生物体系的深入研究与理解将极大促进新一代功能材料的开发,同时也为所面临的难题提供一种全新的解决思路。仿生智能纳米孔道是以生物离子通道为灵感,人工合成和制备的高稳定、高性能材料,可以在能源存储与转换、分离、生物器件、海水淡化等领域得到应用[77-81]。而光响应仿生智能纳米孔道作为其中极具代表的一类,也具有广泛的应用前景。目前,对光响应纳米孔道的研究还在起步阶段,大部分都是停留在基础研究或者基础应用阶段,随着研究的深入,必定会为实际应用尤其是生物传感器的发展提供一个新的研究平台。

致谢 上述工作得到国家自然科学基金(21625303, 51673206, 21434003, 91427303, 21421061) 和中国科学院重点项目(KJZD-EW-M03) 的资助,在此表示感谢!
参考文献
[1] Ehlenbeck S, Gradmann D, Braun F J, Hegemann P. Evidence for a Light-induced H+conductance in the eye of the green alga Chlamydomonas reinhardtii[J]. Biophysical Journal, 2002, 82(2): 740–751. DOI:10.1016/S0006-3495(02)75436-2
[2] Stewart M P, Sharei A, Ding X, Sahay G, Langer R, Jensen K F. In vitro and ex vivo strategies for intracellular delivery[J]. Nature, 2016, 538(7624): 183–192. DOI:10.1038/nature19764
[3] Stowell M H B, McPhillips T M, Rees D C, Soltis S M, Abresch E, Feher G. Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer[J]. Science, 1997, 276(5313): 812–816. DOI:10.1126/science.276.5313.812
[4] Gouaux E, MacKinnon R. Principles of selective ion transport in channels and pumps[J]. Science, 2005, 310(5753): 1461–1465. DOI:10.1126/science.1113666
[5] Blumwald E, Aharon G S, Apse M P. Sodium transport in plant cells[J]. Biochimica Et Biophysica Acta-biomembranes, 2000, 1465(1): 140–151.
[6] Hou X, Guo W, Jiang L. Biomimetic smart nanopores and nanochannels[J]. Chemical Society Reviews, 2011, 40(5): 2385–401. DOI:10.1039/c0cs00053a
[7] Xiao K, Kong X Y, Zhang Z, Xie G, Wen L, Jiang L. Construction and application of photoresponsive smart nanochannels[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2016, 26: 31–47. DOI:10.1016/j.jphotochemrev.2015.12.002
[8] Guo W, Cao L, Xia J, Nie F Q, Ma W, Xue J, Song Y, Zhu D, Wang Y, Jiang L. Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source[J]. Advanced Functional Materials, 2010, 20(8): 1339–1344. DOI:10.1002/adfm.v20:8
[9] Martin C R, Siwy Z S. Learning nature's way: biosensing with synthetic nanopores[J]. Science, 2007, 317(5836): 331–332. DOI:10.1126/science.1146126
[10] Wen L P, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications[J]. Angewandte Chemie International Edition, 2015, 54(11): 3387–3399. DOI:10.1002/anie.201409911
[11] Hou X, Jiang L. Learning from nature: building bio-inspired smart nanochannels[J]. ACS Nano, 2009, 3(11): 3339–3342. DOI:10.1021/nn901402b
[12] Hou X. Smart gating multi-scale pore/channel-based membranes[J]. Advanced Materials, 2016, 28(33): 7049–7064. DOI:10.1002/adma.201600797
[13] Hou X, Zhang Y S, Santiago G T, Alvarez M M, Ribas J, Jonas S J, Weiss P S, Andrews A M, Aizenberg J, Khademhosseini A. Interplay between materials and microfluidics[J]. Nature Reviews Materials, 2017, 2(5): 17016. DOI:10.1038/natrevmats.2017.16
[14] Xiao K, Wen L, Jiang L. Biomimetic solid-state nanochannels: from fundamental research to practical applications[J]. Small, 2016, 12(21): 2810–2831. DOI:10.1002/smll.201600359
[15] Xiao K, Li P, Xie G, Zhang Z, Wen L, Jiang L. Fabrication and ionic transportation characterization of funnel-shaped nanochannels[J]. RSC Advances, 2016, 6(60): 55064–55070. DOI:10.1039/C6RA09606A
[16] Xiao K, Xie G, Zhang Z, Kong X Y, Liu Q, Li P, Wen L, Jiang L. Enhanced stability and controllability of an ionic diode based on funnel-shaped nanochannels with an extended critical region[J]. Advanced Materials, 2016, 28(17): 3345–3350. DOI:10.1002/adma.201505842
[17] Zhang H, Tian Y, Jiang L. Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels[J]. Nano Today, 2016, 11(1): 61–81. DOI:10.1016/j.nantod.2015.11.001
[18] Li J, Stein D, McMullan C, Branton D, Aziz M J. Golovchenko J A. Ion-beam sculpting at nanometre length scales[J]. Nature, 2001, 412(6843): 166–169. DOI:10.1038/35084037
[19] Bell N A, Engst C R, Ablay M, Divitini G, Ducati C, Liedl T, Keyser U F. DNA origami nanopores[J]. Nano Letters, 2011, 12(1): 512–517.
[20] Bulushev R D, Steinbock L J, Khlybov S, Steinbock J F, Keyser U F, Radenovic A. Measurement of the position-dependent electrophoretic force on DNA in a glass nanocapillary[J]. Nano Letters, 2014, 14(11): 6606–6613. DOI:10.1021/nl503272r
[21] Walker M I, Weatherup R S, Bell N A W, Hofmann S, Keyser U F. Free-standing graphene membranes on glass nanopores for ionic current measurements[J]. Applied Physics Letters, 2015, 106(2): 023119. DOI:10.1063/1.4906236
[22] White R J, Ervin E N, Yang T, Chen X, Daniel S, Cremer P S, White H S. Single ion-channel recordings using glass nanopore membranes[J]. Journal of The American Che-mical Society, 2007, 129(38): 11766–11775. DOI:10.1021/ja073174q
[23] Zhang B, Zhang Y, White H S. The nanopore electrode[J]. Analytical Chemistry, 2004, 76(21): 6229–6238. DOI:10.1021/ac049288r
[24] Zhou Y, Guo W, Cheng J, Liu Y, Li J, Jiang L. High-temperature gating of solid-state nanopores with thermo-responsive macromolecular nanoactuators in ionic liquids[J]. Advanced Materials, 2012, 24(7): 962–967. DOI:10.1002/adma.201104814
[25] Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O. Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes[J]. Nano Letters, 2009, 9(7): 2788–2793. DOI:10.1021/nl901403u
[26] Xiao K, Xie G, Li P, Liu Q, Hou G, Zhang Z, Ma J, Tian Y, Wen L, Jiang L. A biomimetic multi-stimuli-response ionic gate using a hydroxypyrene derivation-functionalized asymmetric single nanochannel[J]. Advanced Materials, 2014, 26(38): 6560–6565. DOI:10.1002/adma.v26.38
[27] Hou X, Zhang H, Jiang L. Building bio-inspired artificial functional nanochannels: from symmetric to asymmetric modification[J]. Angewandte Chemie International Edition, 2012, 51(22): 5296–5307. DOI:10.1002/anie.201104904
[28] Hou X, Liu Y J, Dong H, Yang F, Li L, Jiang L. A pH-gating ionic transport nanodevice: asymmetric chemical modification of single nanochannels[J]. Advanced Materials, 2010, 22(22): 2440–2445. DOI:10.1002/adma.v22:22
[29] Ali M, Ramirez P, Nguyen H Q, Nasir S, Cervera J, Mafe S, Ensinger W. Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization[J]. ACS Nano, 2012, 6(4): 3631–3640. DOI:10.1021/nn3010119
[30] Gao L, Li P, Zhang Y, Xiao K, Ma J, Xie G, Hou G, Zhang Z, Wen L, Jiang L. A bio-inspired, sensitive, and selective ionic gate driven by silver (Ⅰ) ions[J]. Small, 2015, 11(5): 543–547. DOI:10.1002/smll.201400658
[31] Liu Q, Wen L, Xiao K, Lu H, Zhang Z, Xie G, Kong X Y, Bo Z, Jiang L. A biomimetic voltage-gated chloride nanochannel[J]. Advanced Materials, 2016, 28(16): 3181–3186. DOI:10.1002/adma.201505250
[32] Liu Q, Xiao K, Wen L, Dong Y, Xie G, Zhang Z, Bo Z, Jiang L. A fluoride-driven ionic gate based on a 4-aminophenylboronic acid-functionalized asymmetric single nanochannel[J]. ACS Nano, 2014, 8(12): 12292–12299. DOI:10.1021/nn506257c
[33] Liu Q, Xiao K, Wen L, Lu H, Liu Y, Kong XY, Xie G, Zhang Z, Bo Z, Jiang L. Engineered ionic gates for ion conduction based on sodium and potassium activated nanochannels[J]. Journal of the American Chemical So-ciety, 2015, 137(37): 11976–11983. DOI:10.1021/jacs.5b04911
[34] Guo W, Xia H, Xia F, Hou X, Cao L, Wang L, Xue J, Zhang G, Song Y, Zhu D. Current rectification in temperature-responsive single nanopores[J]. Chemphyschem, 2010, 11(4): 859–864. DOI:10.1002/cphc.200900989
[35] Brunsen A, Cui J, Ceolín M, del Campo A, Soler-Illia G J, Azzaroni O. Light-activated gating and permselectivity in interfacial architectures combining "caged" polymer brushes and mesoporous thin films[J]. Chemical Communications, 2012, 48(10): 1422–1424. DOI:10.1039/C1CC14443J
[36] Zhang M, Meng Z, Zhai J, Jiang L. Photo-induced current amplification in l-histidine modified nanochannels based on a highly charged photoacid in solution[J]. Chemical Communications, 2013, 49(23): 2284–2286. DOI:10.1039/c2cc38405a
[37] Zhang Q Q, Liu Z Y, Hou X, Fan X, Zhai J, Jiang L. Light-regulated ion transport through artificial ion channels based on TiO2 nanotubular arrays[J]. Chemical Communications, 2012, 48(47): 5901–5903. DOI:10.1039/c2cc32451b
[38] Lan W J, Holden D A, White H S. Pressure-dependent ion current rectification in conical-shaped glass nanopores[J]. Journal of the American Chemical Society, 2011, 133(34): 13300–13303. DOI:10.1021/ja205773a
[39] Zhang Q, Hu Z, Liu Z, Zhai J, Jiang L. Light-gating titania/alumina heterogeneous nanochannels with regulatable ion rectification characteristic[J]. Advanced Functional Materials, 2014, 24(4): 424–431. DOI:10.1002/adfm.201301426
[40] Zhang Q, Liu Z, Hou X, Fan X, Zhai J, Jiang L. Light-regulated ion transport through artificial ion channels based on TiO2 nanotubular arrays[J]. Chemical Communications, 2012, 48(47): 5901–5903. DOI:10.1039/c2cc32451b
[41] Lu S, Guo Z, Xiang Y, Jiang L. Photoelectric frequency response in a bioinspired bacteriorhodopsin/alumina nanochannel hybrid nanosystem[J]. Advanced Materials, 2016, 28(44): 9851–9856. DOI:10.1002/adma.201603809
[42] Rao S, Lu S, Guo Z, Li Y, Chen D, Xiang Y. A light-powered bio-capacitor with nanochannel modulation[J]. Advanced Materials, 2014, 26(33): 5846–5850. DOI:10.1002/adma.v26.33
[43] Zhang Z, Kong X Y, Xie G, Li P, Xiao K, Wen L, Jiang L. "Uphill" cation transport: a bioinspired photo-driven ion pump[J]. Science Advances, 2016, 2(10): e1600689. DOI:10.1126/sciadv.1600689
[44] Nakajima A, Koizumi S, Watanabe T. Hashimoto K, Photoinduced amphiphilic surface on polycrystalline anatase TiO2 thin films[J]. Langmuir, 2000, 16(17): 7048–7050. DOI:10.1021/la0004348
[45] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Light-induced amphiphilic surfaces[J]. Nature, 1997, 388(6641): 431–432. DOI:10.1038/41233
[46] Hu Z Y, Zhang Q Q, Gao J, Liu Z Y, Zhai J, Jiang L. Photocatalysis-triggered ion rectification in artificial nanochannels based on chemically modified asymmetric TiO2 nanotubes[J]. Langmuir, 2013, 29(15): 4806–4812. DOI:10.1021/la400624p
[47] Feringa B L, van Delden R A, Koumura N, Geertsema E M. Chiroptical molecular switches[J]. Chemical Reviews, 2000, 100(5): 1789–1816. DOI:10.1021/cr9900228
[48] Szymanski W, Beierle J M, Kistemaker H A V, Velema W A, Feringa B L. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches[J]. Chemical Reviews, 2013, 113(8): 6114–6178. DOI:10.1021/cr300179f
[49] Beharry A A, Woolley G A. Azobenzene photoswitches for biomolecules[J]. Chemical Society Reviews, 2011, 40(8): 4422–4437. DOI:10.1039/c1cs15023e
[50] Berkovic G, Krongauz V, Weiss V. Spiropyrans and spirooxazines for memories and switches[J]. Chemical Reviews, 2000, 100(5): 1741–1754. DOI:10.1021/cr9800715
[51] Irie M. Diarylethenes for memories and switches[J]. Chemical Reviews, 2000, 100(5): 1686–1716.
[52] Kumar G S, Neckers D. Photochemistry of azobenzene-containing polymers[J]. Chemical Reviews, 1989, 89(8): 1915–1925. DOI:10.1021/cr00098a012
[53] Lukyanov B, Lukyanova M. Spiropyrans: synthesis, pro-perties, and application[J]. Chemistry of Heterocyclic Compounds, 2005, 41(3): 281–311. DOI:10.1007/s10593-005-0148-x
[54] Yokoyama Y. Fulgides for memories and switches[J]. Chemical Reviews, 2000, 100(5): 1717–1740. DOI:10.1021/cr980070c
[55] Vlassiouk I, Park C-D, Vail S A, Gust D, Smirnov S. Control of nanopore wetting by a photochromic spiropyran: a light-controlled valve and electrical switch[J]. Nano Letters, 2006, 6(5): 1013–1017. DOI:10.1021/nl060313d
[56] Alarcon C D H, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications[J]. Chemical Society Reviews, 2005, 34(3): 276–285. DOI:10.1039/B406727D
[57] Ercole F, Davis T P, Evans R A. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond[J]. Polymer Chemistry, 2010, 1(1): 37–54. DOI:10.1039/B9PY00300B
[58] Lee H I, Wu W, Oh J K, Mueller L, Sherwood G, Peteanu L, Kowalewski T, Matyjaszewski K. Light-induced reversible formation of polymeric micelles[J]. Angewandte Chemie International Edition, 2007, 119(14): 2505–2509.
[59] Schumers J M, Fustin C A, Gohy J F. Light-responsive block copolymers[J]. Macromolecular Rapid Communications, 2010, 31(18): 1588–1607. DOI:10.1002/marc.201000108
[60] Wang G, Tong X, Zhao Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates[J]. Macromolecules, 2004, 37(24): 8911–8917. DOI:10.1021/ma048416a
[61] Cabane E, Malinova V, Meier W. Synthesis of photocleavable amphiphilic block copolymers: toward the design of photosensitive nanocarriers[J]. Macromolecular Chemistry and Physics, 2010, 211(17): 1847–1856. DOI:10.1002/macp.201000151
[62] Lendlein A, Jiang H Y, Junger O, Langer R. Light-induced shape-memory polymers[J]. Nature, 2005, 434(7035): 879–882. DOI:10.1038/nature03496
[63] Yu H, Iyoda T, Ikeda T. Photoinduced alignment of nanocylinders by supramolecular cooperative motions[J]. Journal of the American Chemical Society, 2006, 128(34): 11010–11011. DOI:10.1021/ja064148f
[64] Soberats B, Uchida E, Yoshio M, Kagimoto J, Ohno H, Kato T. Macroscopic photocontrol of ion-transporting pathways of a nanostructured imidazolium-based photorespon-sive liquid crystal[J]. Journal of the American Chemical Society, 2014, 136(27): 9552–9555. DOI:10.1021/ja5041573
[65] Wen L, Ma J, Tian Y, Zhai J, Jiang L. A photo-induced, and chemical-driven, smart-gating nanochannel[J]. Small, 2012, 8(6): 834–842.
[66] Meng Z, Bao H, Wang J, Jiang C, Zhang M, Zhai J, Jiang L. Artificialion channels regulating light-induced ionic currents in photoelectrical conversion systems[J]. Advanced Materials, 2014, 26(15): 2329–2334. DOI:10.1002/adma.v26.15
[67] Gao J, Guo W, Feng D, Wang H, Zhao D, Jiang L. High-performance ionic diode membrane for salinity gradient power generation[J]. Journal of the American Chemical Society, 2014, 136(35): 12265–12272. DOI:10.1021/ja503692z
[68] Zhang Z, Kong X Y, Xiao K, Liu Q, Xie G, Li P, Ma J, Tian Y, Wen L, Jiang L. Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device[J]. Journal of The American Chemical Society, 2015, 137(46): 14765–14772. DOI:10.1021/jacs.5b09918
[69] Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M. Water desalination using nanoporous single-layer graphene[J]. Nature Nanotech-nology, 2015, 10(5): 459–64. DOI:10.1038/nnano.2015.37
[70] Wen L P, Hou X, Tian Y, Zhai J, Jiang L. Bio-inspired photoelectric conversion based on smart-gating nanochannels[J]. Advanced Functional Materials, 2010, 20(16): 2636–2642. DOI:10.1002/adfm.201000239
[71] Fujiwara M, Imura T. Photo induced membrane separation for water purification and desalination using azobenzene modified anodized alumina membranes[J]. ACS Nano, 2015, 9(6): 5705–5712. DOI:10.1021/nn505970n
[72] Li P, Xie G, Kong X-Y, Zhang Z, Xiao K, Wen L, Jiang L. Light-controlled ion transport through biomimetic DNA-Based channels[J]. Angewandte Chemie International Edition, 2016, 55(50): 15637–15641. DOI:10.1002/anie.201609161
[73] Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36–36. DOI:10.1038/432036a
[74] Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3: 1247. DOI:10.1038/ncomms2253
[75] Li K, Ju J, Xue Z, Ma J, Feng L, Gao S, Jiang L. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water[J]. Nature Communications, 2013, 4: 2276.
[76] Zheng Y, Bai H, Huang Z, Tian X, Nie F Q, Zhao Y, Zhai J, Jiang L. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640–643. DOI:10.1038/nature08729
[77] Xie G, Tian W, Wen L, Xiao K, Zhang Z, Liu Q, Hou G, Li P, Tian Y, Jiang L. Chiral recognition of L-tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel[J]. Chemical Communications, 2015, 51(15): 3135–3138. DOI:10.1039/C4CC09577D
[78] Siria A, Poncharal P, Biance A L, Fulcrand R, Blase X, Purcell S T, Bocquet L. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube[J]. Nature, 2013, 494(7438): 455–458. DOI:10.1038/nature11876
[79] Hou X, Guo W, Xia F, Nie F Q, Dong H, Tian Y, Wen L P, Wang L, Cao L X, Yang Y, Xue J M, Song Y L, Wang Y G, Liu D S, Jiang L. A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore[J]. Journal of The American Chemical Society, 2009, 131(22): 7800–7805. DOI:10.1021/ja901574c
[80] Kim S J, Song Y A, Han J. Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications[J]. Chemical Society Reviews, 2010, 39(3): 912–922. DOI:10.1039/b822556g
[81] Xiao K, Zhou Y, Kong X Y, Xie G, Li P, Zhang Z, Wen L, Jiang L. Electrostatic-charge-and electric-field-induced smart gating for water transportation[J]. ACS Nano, 2016, 10(10): 9703–9709. DOI:10.1021/acsnano.6b05682