影像科学与光化学  2017, Vol. 35 Issue (4): 464-476   PDF    
石墨烯/有机共轭体系的光热效应与应用
肖林红1,2, 李慧1, 成春贵1, 耿建新1     
1. 中国科学院 理化技术研究所, 北京 100190;
2. 中国建材检验认证集团股份有限公司, 北京 100024
摘要: 本文对近几年来石墨烯/有机共轭体系在光热效应领域取得的重要研究进展进行了总结评述。虽然有机光热试剂具有优异的光热转换效率和良好的生物相容性,但是,有机光热试剂的光稳定性差,限制了其实际应用。现有研究结果表明,石墨烯可显著地增强有机共轭体系的光稳定性,大幅提高其光热转换效率。此外,石墨烯/有机共轭体系还可集多种功能于一体,例如:光声成像指导下的光热治疗、pH响应的荧光成像和光热治疗、光热和光动力联合治疗等,这对有机共轭体系在光热治疗领域的应用具有重要意义。本文总结的研究结果及所作的分析,希望对新型有机共轭体系的光热效应及后续研究起到一定的参考和促进作用。
关键词: 石墨烯     有机染料分子     共轭聚合物     光热效应     光热试剂    
The Photothermal Effect of Graphene/organic Conjugated System and Their Applications
XIAO Linhong1,2, LI Hui1, CHENG Chungui1, GENG Jianxin1     
1. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;
2. China Building Material Test and Certification Group Co. Ltd., Beijing 100024, P. R. China
*Corresponding author: GENG Jianxin, E-mail: jianxingeng@mail.ipc.ac.cn
Abstract: The recent progress of the photothermal effect of graphene/organic conjugated system was summarized. Although organic photothermal agents exhibited high photothermal conversion efficiencies and excellent biocompatibilities, their low photo-stabilities restricted their real applications. Recently, some reports indicated that graphene could improve the photo-stabilities and enhance the photothermal conversion efficiencies of organic conjugated molecules. In addition, multiple functions, such as photoacoustic imaging-guided photothermal therapy, pH responsive fluorescence imaging-guided photothermal therapy, and chem-photothermal therapy, can be integrated into the graphene/organic conjugated system, which plays an important role in the field of photothermal therapy. This review article summarizes the recent progress of the photothermal effect of graphene/organic conjugated system, and will be useful for the development of the photothermal effect of graphene/organic conjugated system.
Key words: graphene     organic dye molecules     conjugated polymers     photothermal effect     photothermal agents    
1 引言

近年来,光热效应由于其在光控器件、光热杀菌以及光热治疗等领域的应用,引起了科学家的广泛关注。当一束光照射到物质表面后,会产生一系列的物理现象,如散射(包括多重折射和反射的结果)、吸收和发光等[1]。如果没有化学发光或其化学发光可以忽略不计,那么某些物质还可将其吸收的一部分光能转变为热能,这种将光能转换为热能的现象称为光热效应,具有光热效应的物质统称为光热试剂。光热转换效率是指光热试剂将吸收的光能转换为热能的比例,用于评价光热试剂对光的利用效率,是光热效应中一个重要参数。

首先,光热试剂具有共同的特点,即在紫外至近红外光区中的某一波段或整个波段中具有较好的吸收。其次,光热试剂还需具有优异的光热转换效应和稳定性,即长时间光照下依然能保持其优异的光热效应。近年来,文献中报道了多种无机纳米材料具有光热效应,例如Au[2]、Ag[3]、Pt[4]等贵金属纳米材料,以及较新的过渡金属硫化物(CuS)纳米材料[5]等。这类无机光热试剂具有光吸收波谱可调控的优点[6],但其稳定性较差,长时间的光照易引起纳米材料形状的改变[7]。此外,无机光热试剂的生物相容性差以及潜在的生物毒性限制其在生物医学相关领域的应用。因此,无机光热试剂的稳定性和生物安全性是其走向实际应用难以逾越的瓶颈。

近年来,菁类染料[8]、聚苯胺[9]、聚吡咯[10, 11]等有机光热试剂[12]因具有良好的生物相容性和优异的光热转换效率而得到了快速的发展。这类材料安全可靠,其中吲哚菁绿(ICG)染料已获得了美国食品与药物管理局的使用许可,在近红外荧光成像研究中有广泛的应用,也是最早应用于体内光热治疗癌症的近红外区染料[13]。但是,有机光热试剂的稳定性较差,长时间放置或光照存在光漂白现象,使其性能下降。目前,已有文献利用有机光热试剂与其他材料复合增加其稳定性,提高光热转换效率[8, 14, 15]。其中,石墨烯因具有巨大的比表面积、易于表面修饰等特点被人们广泛采用[16, 17]。本文主要综述了石墨烯/有机共轭体系光热效的研究进展及几种典型应用。

2 石墨烯/有机共轭体系的光热效应及其增强的机理

光热转换过程的基础为物质对光的吸收,不同的物质对光的吸收机理存在差异,这与它们本身的电子结构或能带结构有关。有机光热试剂和石墨烯主要利用电子在分子轨道的跃迁吸收光能,然后将吸收的光能转换为热能,表现出光热效应[18, 19]。这类光热试剂的分子轨道中,通常具有远程的超共轭作用,存在大共轭的π成键分子轨道和π*反键分子轨道,且轨道能量间隙一般较小。在光的诱导下,这类物质成键分子轨道上的π电子吸收光的能量后,跃迁到π*反键分子轨道上,在处于激发态的电子回落至基态的过程中,部分能量以热量的形式释放出来,产生光热效应。

石墨烯及其衍生物在紫外至近红外光区具有较强的光吸收能力,展现了一定的光热效应,在光控器件、光热杀菌和光热治疗等领域具有重要应用[20-22]。此外,石墨烯优异的物理、化学性质以及易于表面修饰等特点,使其可与其他光热试剂结合,制备的复合材料具有更强的光吸收能力、更高的光热转换效率,因而受到科学家的广泛关注[23, 24]

为了研究石墨烯对有机共轭体系光热效应的影响,我们课题组[25]通过在石墨烯表面共价接枝聚(3-己基噻吩)(P3HT),制备了RGO-g-P3HT复合材料。RGO-g-P3HT的光热转换效率高达82%,是纯P3HT的5倍。随后,我们通过改变P3HT与RGO的比例,考察了一系列P3HT@RGO悬浮液的温度变化与对应的P3HT荧光发射峰面积间的关系,定量评价了复合材料各组分对RGO-g-P3HT光热效应的贡献(图 1)。我们发现,P3HT@RGO悬浮液的ΔT随体系中P3HT对RGO比例变化的转折点正是其PL光谱中猝灭效应的转折点。即当体系中P3HT与RGO的质量比小于0.01:1时,PL发射峰的积分面积约为零,P3HT的PL发射几乎全部被猝灭,此时ΔT增加速率较快;当体系中P3HT与RGO的质量比大于该值时,PL发射峰的积分面积逐渐增加,P3HT的PL发射不能被全部猝灭,ΔT增加速率变小。上述结果表明,由P3HT向RGO的光诱导电子转移在提高P3HT@RGO体系的光热性能中起着主导作用。我们首次提出了石墨烯与共轭聚合物间的光诱导能量转移可提高复合材料光热转换效率的新机制(图 2),这对设计新型光热试剂具有借鉴意义。

图 1 (a)RGO-g-P3HT的结构式;(b)RGO-g-P3HT和RGO悬浮液(1 mL, 1 mg·mL-1)、P3HT溶液(1 mL, 0.17 mg·mL-1)、以及RGO@P3HT悬浮液(1 mL, RGO与P3HT的浓度与RGO-g-P3HT复合材料中对应组分的浓度相等)的光热升温曲线;(c)RGO@P3HT悬浮液的PL光谱,其中RGO组分浓度固定(0.2 mg·mL-1),P3HT组分浓度依次变化;(d)P3HT与RGO不同比例时,RGO@P3HT悬浮液温度变化与对应的荧光发射峰面积间的关系[25] Fig.1 (a) Molecular structures of RGO-g-P3HT; (b) the photothermal heating curves for the suspensions of RGO-g-P3HT and RGO (1 mL, 1 mg·mL-1), the solution of P3HT (1 mL, 0.17 mg·mL-1), and the suspension of RGO@P3HT (1 mL, the concentrations of RGO and P3HT being equal to that of RGO and P3HT components in the RGO-g-P3HT composite); (c) PL spectra of the suspensions of various RGO@P3HT composites having a fixed concentration of RGO (0.2 mg·mL-1) and various concentrations of P3HT; (d) ΔT of the RGO@P3HT composite suspensions after irradiation for 3 min and the integration of the PL emission peak of the suspensions as a function of the mass ratio between P3HT and RGO[25]

图 2 由P3HT向RGO的光诱导电子转移对提高RGO-g-P3HT光热效应的示意图[25] Fig.2 Schematic illustration of the enhanced photothermal effect of RGO-g-P3HT due to the photoinduced energy transfer from P3HT to RGO in the composite[25]
3 石墨烯/有机共轭体系光热试剂的主要类型

有机共轭体系包括:含有大共轭体系的有机染料分子和共轭聚合物,下面分别从石墨烯/有机染料分子和石墨烯/共轭聚合物两个部分进行介绍。

3.1 石墨烯/有机染料分子

吲哚菁绿(ICG)是一种在近红外光区有特征吸收峰的有机染料,研究表明,ICG可将吸收的光能有效地转换为热能,用于光热治疗[13]。但是,ICG在水中不稳定,具有浓度依赖的聚集现象,限制了其在光热治疗领域的应用[26]。为了增加其稳定性,Hu等[8]通过ICG与PDA-rGO间的氢键和π-π相互作用设计了负载有ICG的ICG-PDA-rGO复合材料。经过4次光开/关的循环后,ICG分子在780 nm处的吸光度下降了68%,其光热效应几乎消失,而ICG-PDA-rGO复合材料的紫外-可见吸收光谱未见明显变化,表现出更稳定的光热效应(图 3)。此外,ICG-PDA-rGO还具有光声成像特性,在光声成像指导下可进行光热治疗,实现对肿瘤的有效抑制。更多的研究表明,将石墨烯作为载体对增强ICG的稳定性、改善其光热效应都起到了一定的作用,并可在同一体系中实现多重功能,例如成像指导下的光热治疗、光热治疗与光动力治疗协同作用等[27]

图 3 (a)PBS、GO、PDA-rGO、以及ICG-PDA-rGO的光热升温曲线;(b)不同浓度的ICG-PDA-rGO溶液的光热升温曲线,自上至下,其浓度依次为2.5、5、10、20 mg·L-1;(c)在光开/关循环过程中,ICG-PDA-rGO和ICG溶液的温度变化曲线;(d)4次光开/关循环后,ICG-PDA-rGO和ICG溶液的紫外-可见吸收光谱[8] Fig.3 (a) Photothermal heating curves of PBS, GO, PDA-rGO and ICG-PDA-rGO solutions; (b) photothermal heating curves of ICG-PDA-rGO with different concentrations, from down to up: 2.5, 5, 10, 20 mg·L-1; (c) temperature evaluation of ICG-PDA-rGO and equal free ICG solutions over four laser ON/OFF cycles; (d) the UV-Vis absorption spectra of free ICG and ICG-PDA-rGO solutions before and after four cycles of laser irradiation[8]

除吲哚族染料之外,科学家发现其他染料分子也具有光热效应。花青类染料(CysCOOH)也是一种在近红外光区有吸收的有机染料,为了进一步增强单一组分的光热效应,Rong等人[28]通过CysCOOH与GO-PEG之间的π-π相互作用制备了GO-PEG-CysCOOH复合材料。与单一组分相比,GO-PEG-CysCOOH在近红外光区的光吸收进一步增强,且表现出增强的光热治疗效果:在低功率密度的激光照射下(0.5 W·cm-2),即可有效杀死小鼠体内的癌细胞。

除非共价修饰外,共价接枝也可将有机染料分子高效地负载到石墨烯表面,并赋予复合材料新的特性。ICG的一种羧基衍生物(Cypate)是一种在近红外光区有较强吸收的有机染料,具有良好的近红外成像及光热特性,但其光稳定性差,严重影响了其在生物成像和光热治疗等领域的广泛应用。为了解决上述问题,Guo等[29]利用石墨烯与Cypate间的酰胺化反应,将Cypate共价接枝到石墨烯表面,制备了GO-Cypate复合材料。结果表明,该复合材料中石墨烯组分与Cypate组分间存在荧光共振能量转移,可显著增强复合材料的光热效应。此外,在不同的pH环境下GO-Cypate中的Cypate组分构型不同,导致其表现出不同的光热效应,使其成为新型的pH响应的光热试剂,这对光热试剂的应用具有重要参考意义(图 4)。

图 4 GO-Cypate复合材料增强的光热效应及其pH响应性的示意图[29] Fig.4 Schematic illustration of smart GO-Cypate nanoconjugate exhibiting enhanced photothermal performance mediated by pH-dependent FRET[29]
3.2 石墨烯/共轭聚合物

共轭聚合物例如聚苯胺、聚吡咯、聚噻吩等,也存在大的共轭体系,在近红外光区也具有较高的吸光度。最近的研究表明共轭聚合物也具有一定的光热效应,主要包括2011年Yang等[9]报道的聚苯胺,2012年Liu研究组[30]报道的聚吡咯[10]、聚噻吩,2013年Lu研究组[31]报道的聚多巴胺黑色素,以及2017年Guo等[32]报道的噻吩-苯-吡咯并吡咯二酮类的聚合物等。与有机染料分子相比,共轭聚合物体系的光稳定性大幅提高,且能够在肿瘤部位实现被动靶向富集,有利于其在光热治疗领域的应用。但是,共轭聚合物类光热试剂的光热转换效率仍然有待提升。

为了解决上述问题,本课题组[25]利用酰胺化反应将P3HT共价接枝到石墨烯表面,制备了RGO-g-P3HT复合材料。结果表明,复合材料中RGO组分可有效猝灭P3HT组分的荧光,存在由P3HT向RGO的光诱导能量转移,该过程显著提高了RGO-g-P3HT的光热转换效率。为了进一步拓宽石墨烯/聚噻吩复合材料光热效应的应用领域,本课题组[33]在石墨烯表面接枝带正电荷的水溶性聚噻吩,制备了带正电荷的石墨烯/聚噻吩复合材料。该复合材料在水中具有良好的分散稳定性,且在紫外至近红外光区的光吸收增强。由于复合材料中存在由聚噻吩向石墨烯的光电子转移,这使得复合材料的光热转换效率高达88%,远高于文献中报道的其他无机、有机光热试剂。此外,带正电荷的石墨烯/聚噻吩复合材料与带负电荷的细菌间的静电作用可进一步增强复合材料的光热效应,提高其光热杀菌效果(图 5),这为设计其他光热杀菌试剂提供了新思路。

图 5 (a)不同浓度的带正电荷的石墨烯/聚噻吩复合材料的光热升温曲线;(b)带正电荷的石墨烯/聚噻吩复合材料光热杀菌效果增强的示意图[33] Fig.5 (a) The photothermal heating curves of positively charged RGO-g-P3TOPA suspensions with different concentrations; (b) the schematic illustration of the enhanced photothermal antibacterial effect of positively charged RGO-g-P3TOPA composite[33]

Yang等[34]首次报道聚苯胺的光热效应可用于治疗上皮肿瘤细胞,但所需聚苯胺浓度较高,且激光照射的功率密度较大,需对其进一步改进。Neelgund等[35]在此基础上通过原位聚合法在石墨烯表面均匀沉积了聚苯胺纳米管,制备的复合材料在近红外光区的吸收增强,在808 nm或980 nm激光的照射下,均表现出增强的光热效应,这推动了聚苯胺在光热治疗领域的应用。

PEDOT:PSS是共轭聚合物聚(3,4-乙撑二氧噻吩) (PEDOT)和带负电的聚合物聚(4-苯乙烯磺酸盐) (PSS)复合的产物,其纳米粒子在水溶液中表现出强烈的近红外吸收,也被报道用于制备光热试剂[30]

Sharker等[36]制备了rGO/[PEDOT:D-PSM]:C/B-PgP复合材料,PEDOT:D-PSM通过非共价作用与石墨烯复合,可显著增强复合材料在近红外光区的吸收,提高其光热转换效率。此外,将BODIPY负载至复合材料表面,可进一步实现pH响应的细胞成像特性,应用于癌细胞成像指导下的光热治疗(图 6),这对癌症的诊断和治疗具有重要意义。

图 6 rGO/[PEDOT:D-PSM]:C/B-PgP复合材料的制备、其pH响应性的癌细胞成像和光热治疗过程示意图[36] Fig.6 Schematic illustration of the preparation of hybrid photothermal agents based on organic PEDOT:D-PSM and fluorescent polymeric composite C/B-PgP anchored rGO/[PEDOT:D-PSM]:C/B-PgP and their pH responsive bioimaging index, and NIR light responsive photothermal activation to ablate tumor by using NIR laser irradiation[36]

聚多巴胺(PDA)是由多巴胺在碱性条件下自聚形成的,其结构类似于黑色素,因此PDA具有良好的生物相容性。研究表明PDA具有优异的光热转换效率,是极具潜力的新型光热试剂[31]。Hu等[37]通过非共价修饰在石墨烯表面负载了PDA,随后利用Micheal加成反应,将C60接枝到PDA-rGO复合材料上,制备的C60-PDA-rGO复合材料可同时实现光热治疗和光动力治疗。Shao等[38]通过非共价修饰方法制备了石墨烯与聚多巴胺的复合材料pRGO@MS-HA,同时在该复合材料表面负载阿霉素(Doxorubicin, DOX),可通过改变环境的pH和近红外光来控制DOX的释放,即该复合材料可同时实现光热治疗和化疗。

4 石墨烯/有机共轭体系光热效应的应用

目前,科学工作者对石墨烯/有机共轭体系光热效应在各领域的应用做出了大量的探索和努力,从最初的光热治疗、光热杀菌到光控器件等等,呈现出多样化的趋势。激光具有准直性好、亮度高等优点,是一种适用于遥控光控器件、可实现光控器件快速响应的理想光源。可见光资源丰富、易于获取,大量光热试剂可利用可见光产生光热效应,从而有效杀死环境中的细菌。近红外光对生物体组织具有极强的穿透性,因此可将其应用于光热治疗领域,实现体内癌症的诊断和治疗。

4.1 光控器件

光控器件能够在外界光照的刺激下,将光能转换为二维或三维的运动,这类器件具有非接触控制、遥控以及与其他部件高度整合等优点,在开关、微型机器人、人工肌肉以及马达等领域具有潜在应用。石墨烯/有机共轭体系优异的光热效应、良好的柔韧性和突出的力学性能,使其成为制造光控器件的理想材料。Ji等[39]利用原位聚合法制备了PDA与石墨烯的复合材料PDA-RGO,PDA-RGO薄膜具有优异的光热效应,并易于吸湿,从而引起其形状变化。随后,将PDA-RGO薄膜与NOA-63薄膜紧密贴合,得到具有近红外光响应性的PDA-RGO/NOA-63薄膜。在近红外光的照射下,通过PDA-RGO的光热效应改变薄膜内含水量,从而使薄膜的形状发生变化,导致PDA-RGO/NOA-63薄膜可实现蠕虫状运动(图 7)。

图 7 当近红外光周期性开(1~4) 和关(5~8) 时,PDA-RGO/NOA-63薄膜在棘齿状基底上从右向左运动[39] Fig.7 Locomotion of a walking device on a ratchet substrate when NIR light is periodically turned on (1-4) and off (5-8), the walking device moves from right to left[39]

如前所述,我们课题组[25]在石墨烯表面共价接枝了P3HT,由于复合材料中存在由P3HT向RGO的光电子转移,制备的RGO-g-P3HT表现出增强的光热效应。随后,我们将RGO-g-P3HT作为光热涂层涂覆在热敏双金属片表面,利用RGO-g-P3HT的光热效应来控制电路的开/合,从而通过控制激光的开/关来实现灯的开关(图 8),这对设计新型的光控器件具有重要参考意义。

图 8 (a)光控电开关的示意图;(b)双金属片开关的工作原理示意图:左侧为开路,右侧为闭路;(c)基于RGO-g-P3HT的电开关控制的LED灯的开/关[25] Fig.8 (a) Schematic illustration of a remote photocontrolled electrical switch; (b) schematic illustration of the working principle of a bimetallic switch: the left panel for an open circuit and the right panel for a closed circuit, and (c) demonstration of on/off state of a LED bulb controlled by using a RGO-g-P3HT based switch[25]
4.2 光热杀菌

近年来,抗生素的滥用导致了细菌耐药性这一世界难题的出现。目前,科学家致力于开发新型的抗菌药物或者杀菌方法以解决细菌耐药性的问题[40, 41],光热杀菌治疗方法就是其中最具前景的新疗法之一。Zharov等[42]首次将金纳米颗粒的光热效应用于杀菌领域,并证明光热杀菌不仅具有广谱性,而且细菌不易产生耐药性。Yang等[43]通过在石墨烯表面负载有机共轭小分子(Eu复合物)和万古霉素,获得了具有优异光热效应和细菌靶向作用的复合材料Eu-Van-rGO。在近红外光的照射下,Eu-Van-rGO展现出优异的细菌靶向作用和显著的光热杀菌效果(图 9)。Hui等[44]利用层层自组装法将石墨烯与聚苯乙烯磺酸钠(PSS)复合,制备了PEL-RGO薄膜,该薄膜在紫外至近红外光区均有极强的光吸收,展现了突出的光热效应,在模拟太阳光的照射下即可有效杀死细菌。我们课题组[33]将带正电荷的聚噻吩接枝到石墨烯表面,制备的石墨烯/聚噻吩复合材料表面带正电荷,可与带负电荷的大肠杆菌通过静电引力紧密结合,从而展现出增强的光热杀菌效果,在极低的浓度(2.5 μg·mL-1)下即可100%杀死大肠杆菌,这对设计新型的杀菌试剂具有重要意义。

图 9 (a)Eu-Van-rGO的靶向成像和光热杀菌的示意图;(b)Eu复合物的结构;(c)万古霉素的结构[43] Fig.9 (a) Illustration of Eu-Van-rGO for targeted bacteria imaging and photothermal killing; (b) the structure of the Eu complex; (c) the structure of vancomycin[43]
4.3 光热治疗

作为一种新的癌症治疗方法,光热治疗主要利用光热试剂产生的局部高温对癌细胞进行局部治疗而不伤害周围的健康组织。与传统治疗方法相比,光热治疗具有很多优势,例如高选择性、低伤害性等,正成为科学研究的热点。

Hu等[37]通过非共价修饰在石墨烯表面负载了PDA,随后利用Micheal加成反应,将C60接枝到PDA-rGO复合材料上,制备了C60-PDA-rGO复合材料。在体外细胞实验中,C60-PDA-rGO可同时实现光热治疗和光动力治疗。随着研究的深入,光热治疗逐渐向着诊疗一体化的方向发展,通过光声、荧光成像等方式获取诊断信息并实现光热治疗已成为研究者关注的热点。Wang等[45]通过π-π相互作用将ICG负载到石墨烯表面,并在石墨烯表面共价接枝具有癌细胞靶向作用的叶酸分子,在体外细胞实验中,实现了光声成像下的定向光热治疗。在完成体外细胞实验后,光热试剂的应用又被推向了下一个阶段,即在动物体内进行光热治疗,考察光热试剂在完整生命系统中的行为和作用。Kim等[46]利用吸收近红外光的染料IR825与石墨烯复合,制备了PgP/HA-rGO复合材料,在体内细胞实验中,该复合材料可同时实现pH响应的生物成像和癌细胞靶向的光热治疗(图 10),这对开发新一代的光热治疗试剂具有重要意义。

图 10 PgP/HA-rGO复合材料的pH响应的生物成像以及癌细胞靶向的光热治疗效果图[46] Fig.10 The pH tunable diagnosis and cancer cell-targeted photothermal therapy of the PgP/HA-rGO composite[46]
5 结论与展望

本文从增强有机共轭体系光热试剂的稳定性、提高其光热转换效率的角度阐述了一系列石墨烯/有机共轭体系的制备及其应用。现有研究结果表明,石墨烯独特的二维共轭结构可显著提高有机共轭体系的稳定性和光热转换效率,对有机共轭体系光热试剂在光热治疗等领域的应用具有重要意义。本文总结的研究结果及所进行的分析讨论,希望对石墨烯/有机共轭体系光热效应的后续研究起到一定的参考和促进作用。

致谢 感谢中国科学院“百人计划”项目和国家自然科学基金项目(21274158、91333114、U1362106) 的资助。
参考文献
[1] Jaque D, Martinez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza J L, Martin Rodriguez E, Garcia Sole J. Nanoparticles for photothermal therapies[J]. Nanoscale, 2014, 6(16): 9494–9530. DOI:10.1039/C4NR00708E
[2] Dickerson E B, Dreaden E C, Huang X, El-Sayed I H, Chu H, Pushpanketh S, McDonald J F, El-Sayed M A. Gold nanorod assisted near-infrared plasmonic photothermal the-rapy(PPTT) of squamous cell carcinoma in mice[J]. Cancer Letters, 2008, 269(1): 57–66. DOI:10.1016/j.canlet.2008.04.026
[3] Huang Y F, Sefah K, Bamrungsap S, Chang H T, Tan W. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods[J]. Langmuir, 2008, 24(20): 11860–11865. DOI:10.1021/la801969c
[4] Manikandan M, Hasan N, Wu H F. Platinum nanoparticles for the photothermal treatment of neuro 2A cancer cells[J]. Biomaterials, 2013, 34(23): 5833–5842. DOI:10.1016/j.biomaterials.2013.03.077
[5] Tian Q, Jiang F, Zou R, Liu Q, Chen Z, Zhu M, Yang S, Wang J, Wang J, Hu J. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo[J]. ACS Nano, 2011, 5(12): 9761–9771. DOI:10.1021/nn203293t
[6] Lim D K, Barhoumi A, Wylie R G, Reznor G, Langer R S, Kohane D S. Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide[J]. Nano Letters, 2013, 13(9): 4075–4079. DOI:10.1021/nl4014315
[7] Zedan A F, Moussa S, Terner J, Atkinson G, El-Shall M S. Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions[J]. ACS Nano, 2013, 7(1): 627–636. DOI:10.1021/nn304775h
[8] Hu D, Zhang J, Gao G, Sheng Z, Cui H, Cai L. Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics[J]. Theranostics, 2016, 6(7): 1043–1052. DOI:10.7150/thno.14566
[9] Yang J, Choi J, Bang D, Kim E, Lim E K, Park H, Suh J S, Lee K, Yoo K H, Kim E K, Huh Y M, Haam S. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells[J]. Angewandte Chemie Internatio-nal Edition, 2011, 50(2): 441–444. DOI:10.1002/anie.201005075
[10] Yang K, Xu H, Cheng L, Sun C, Wang J, Liu Z. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles[J]. Advanced Materials, 2012, 24(41): 5586–5592. DOI:10.1002/adma.201202625
[11] Zha Z, Yue X, Ren Q, Dai Z. Uniform polypyrrole nano-particles with high photothermal conversion efficiency for photothermal ablation of cancer cells[J]. Advanced Materials, 2013, 25(5): 777–782. DOI:10.1002/adma.201202211
[12] Kim S H, Kang E B, Jeong C J, Sharker S M, In I, Park S Y. Light controllable surface coating for effective photothermal killing of bacteria[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15600–15606.
[13] Yu J, Javier D, Yaseen M A, Nitin N, Richards-Kortum R, Anvari B, Wong M S. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules[J]. Journal of the American Chemical Society, 2010, 132(6): 1929–1938. DOI:10.1021/ja908139y
[14] Ferrauto G, Carniato F, Di Gregorio E, Tei L, Botta M, Aime S. Large photoacoustic effect enhancement for icg confined inside mcm-41 mesoporous silica nanoparticles[J]. Nanoscale, 2017, 9(1): 99–103. DOI:10.1039/C6NR08282C
[15] Hu D, Liu C, Song L, Cui H, Gao G, Liu P, Sheng Z, Cai L. Indocyanine green-loaded polydopamine-iron ions coordination nanoparticles for photoacoustic/magnetic resonance dual-modal imaging-guided cancer photothermal the-rapy[J]. Nanoscale, 2016, 8(39): 17150–17158. DOI:10.1039/C6NR05502H
[16] Sharker S M, Lee J E, Kim S H, Jeong J H, In I, Lee H, Park S Y. pH triggered in vivo photothermal therapy and fluorescence nanoplatform of cancer based on responsive polymer-indocyanine green integrated reduced graphene oxide[J]. Biomaterials, 2015, 61: 229–238. DOI:10.1016/j.biomaterials.2015.05.040
[17] Miao W, Shim G, Kim G, Lee S, Lee H-J, Kim Y B, Byun Y, Oh Y K. Image-guided synergistic photothermal therapy using photoresponsive imaging agent-loaded graphene-based nanosheets[J]. Journal of Controlled Release, 2015, 211: 28–36. DOI:10.1016/j.jconrel.2015.05.280
[18] Lim D K, Barhoumi A, Wylie R G, Reznor G, Langer R S, Kohane D S. Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide[J]. Nano Letters, 2013, 13(9): 4075–4079. DOI:10.1021/nl4014315
[19] You J, Heo J S, Kim J, Park T, Kim B, Kim H S, Choi Y, Kim H O, Kim E. Noninvasive photodetachment of stem cells on tunable conductive polymer nano thin films: selective harvesting and preserved differentiation capacity[J]. ACS Nano, 2013, 7(5): 4119–4128. DOI:10.1021/nn400405t
[20] Robinson J T, Tabakman S M, Liang Y, Wang H, Casalongue H S, Daniel V, Dai H. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy[J]. Journal of the American Chemical Society, 2011, 133(17): 6825–6831. DOI:10.1021/ja2010175
[21] Wu M C, Deokar A R, Liao J H, Shih P Y, Ling Y C. Graphene-based photothermal agent for rapid and effective killing of bacteria[J]. ACS Nano, 2013, 7(2): 1281–1290. DOI:10.1021/nn304782d
[22] Cheng Z, Wang T, Li X, Zhang Y, Yu H. NIR-Vis-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites[J]. ACS Applied Materials & Interfaces, 2015, 7(49): 27494–27501.
[23] Chen H, Liu Z, Li S, Su C, Qiu X, Zhong H, Guo Z. Fabrication of graphene and aunp core polyaniline shell nanocomposites as multifunctional theranostic platforms for SERS real-time monitoring and chemo-photothermal therapy[J]. Theranostics, 2016, 6(8): 1096–1104. DOI:10.7150/thno.14361
[24] Zhu C H, Lu Y, Peng J, Chen J F, Yu S H. Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves[J]. Advanced Functional Materials, 2012, 22(19): 4017–4022. DOI:10.1002/adfm.v22.19
[25] Meng D, Yang S, Guo L, Li G, Ge J, Huang Y, Bielawski C W, Geng J. The enhanced photothermal effect of graphene/conjugated polymer composites: Photoinduced energy transfer and applications in photocontrolled switches[J]. Chemical Communications, 2014, 50(92): 14345–14348. DOI:10.1039/C4CC06849A
[26] Saxena V, Sadoqi M, Shao J. Degradation kinetics of indocyanine green in aqueous solution[J]. Journal of Pharmaceutical Sciences, 2003, 92(10): 2090–2097. DOI:10.1002/jps.10470
[27] Ocsoy I, Isiklan N, Cansiz S, Ozdemir N, Tan W. ICG-conjugated magnetic graphene oxide for dual photothermal and photodynamic therapy[J]. RSC Advances, 2016, 6(36): 30285–30292. DOI:10.1039/C6RA06798K
[28] Rong P, Wu J, Liu Z, Ma X, Yu L, Zhou K, Zeng W, Wang W. Fluorescence dye loaded nano-graphene for multimodal imaging guided photothermal therapy[J]. RSC Advances, 2016, 6(3): 1894–1901. DOI:10.1039/C5RA24752G
[29] Guo M, Huang J, Deng Y, Shen H, Ma Y, Zhang M, Zhu A, Li Y, Hui H, Wang Y, Yang X, Zhang Z, Chen H. pH-responsive cyanine-grafted graphene oxide for fluorescence resonance energy transfer-enhanced photothermal therapy[J]. Advanced Functional Materials, 2015, 25(1): 59–67. DOI:10.1002/adfm.v25.1
[30] Cheng L, Yang K, Chen Q, Liu Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer[J]. ACS Nano, 2012, 6(6): 5605–5613. DOI:10.1021/nn301539m
[31] Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy[J]. Advanced Materials, 2013, 25(9): 1353–1359. DOI:10.1002/adma.v25.9
[32] Guo L, Liu W, Niu G, Zhang P, Zheng X, Jia Q, Zhang H, Ge J, Wang P. Polymer nanoparticles with high photothermal conversion efficiency as robust photoacoustic and thermal theranostics[J]. Journal of Materials Chemistry B, 2017, 5(15): 2832–2839. DOI:10.1039/C7TB00498B
[33] Xiao L, Sun J, Liu L, Hu R, Lu H, Cheng C, Huang Y, Wang S, Geng J. Enhanced photothermal bactericidal activity of the reduced graphene oxide modified by cationic water-soluble conjugated polymer[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5382–5391.
[34] Yang J, Choi J, Bang D, Kim E, Lim E K, Park H, Suh J S, Lee K, Yoo K H, Kim E K, Huh Y M, Haam S. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells[J]. Angewandte Chemie International Edition, 2011, 50(2): 441–444. DOI:10.1002/anie.201005075
[35] Neelgund G M, Bliznyuk V N, Oki A. Photocatalytic activity and NIR laser response of polyaniline conjugated graphene nanocomposite prepared by a novel acid-less method[J]. Applied Catalysis B: Environmental, 2016, 187: 357–366. DOI:10.1016/j.apcatb.2016.01.009
[36] Sharker S M, Kang E B, Shin C I, Kim S H, Lee G, Park S Y. Near-infrared-active and pH-responsive fluorescent polymer-integrated hybrid graphene oxide nanoparticles for the detection and treatment of cancer[J]. Journal of Applied Polymer Science, 2016, 133(32): 43791.
[37] Hu Z, Zhao F, Wang Y, Huang Y, Chen L, Li N, Li J, Li Z, Yi G. Facile fabrication of a C60-polydopamine-graphene nanohybrid for single light induced photothermal and photodynamic therapy[J]. Chemical Communications, 2014, 50(74): 10815–10818. DOI:10.1039/C4CC04416A
[38] Shao L, Zhang R, Lu J, Zhao C, Deng X, Wu Y. Mesoporous silica coated polydopamine functionalized reduced graphene oxide for synergistic targeted chemo-photothermal therapy[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1226–1236.
[39] Ji M, Jiang N, Chang J, Sun J. Near-infrared light-driven, highly efficient bilayer actuators based on polydopamine-modified reduced graphene oxide[J]. Advanced Functional Materials, 2014, 24(34): 5412–5419. DOI:10.1002/adfm.201401011
[40] Koul A, Arnoult E, Lounis N, Guillemont J, Andries K. The challenge of new drug discovery for tuberculosis[J]. Nature, 2011, 469(7331): 483–490. DOI:10.1038/nature09657
[41] Kumarasamy K K, Toleman M A, Walsh T R, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske C G, Irfan S, Krishnan P, Kumar A V, Maharjan S, Mushtaq S, Noorie T, Paterson D L, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma J B, Sharma M, Sheridan E, Thirunarayan M A, Turton J, Upadhyay S, Warner M, Welfare W, Livermore D M, Woodford N. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study[J]. Lancet Infectious Diseases, 2010, 10(9): 597–602. DOI:10.1016/S1473-3099(10)70143-2
[42] Zharov V P, Mercer K E, Galitovskaya E N, Smeltzer M S. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles[J]. Biophysical Journal, 2006, 90(2): 619–627. DOI:10.1529/biophysj.105.061895
[43] Yang X, Li Z, Ju E, Ren J, Qu X. Reduced graphene oxide functionalized with a luminescent rare-earth complex for the tracking and photothermal killing of drug-resistant bacteria[J]. Chemistry-A European Journal, 2014, 20(2): 394–398. DOI:10.1002/chem.v20.2
[44] Hui L, Auletta J T, Huang Z, Chen X, Xia F, Yang S, Liu H, Yang L. Surface disinfection enabled by a layer-by-layer thin film of polyelectrolyte-stabilized reduced graphene oxide upon solar near-infrared irradiation[J]. ACS Applied Materials & Interfaces, 2015, 7(19): 10511–10517.
[45] Wang Y W, Fu Y Y, Peng Q, Guo S S, Liu G, Li J, Yang H H, Chen G N. Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging[J]. Journal of Materials Chemistry B, 2013, 1(42): 5762–5767. DOI:10.1039/c3tb20986e
[46] Kim S H, Lee J E, Sharker S M, Jeong J H, In I, Park S Y. In vitro and in vivo tumor targeted photothermal cancer therapy using functionalized graphene nanoparticles[J]. Biomacromolecules, 2015, 16(11): 3519–3529. DOI:10.1021/acs.biomac.5b00944