影像科学与光化学  2017, Vol. 35 Issue (4): 536-545   PDF    
选择性检测谷胱甘肽的荧光探针
王媛1,3, 陈潇潇2, 刘学良2, 陈玉哲1, 牛丽亚2, 吴骊珠1, 杨清正2     
1. 中国科学院 理化技术研究所, 北京 100190;
2. 北京师范大学 化学学院, 北京 100875;
3. 中国科学院大学, 北京 100049
摘要: 本文设计合成了一种基于BODIPY衍生物选择性检测谷胱甘肽的比率式荧光探针1。荧光探针1中BODIPY的3位连有苯乙炔基团,5位连有咪唑盐离去基团,利用其与谷胱甘肽和半胱氨酸反应机理的不同实现了对谷胱甘肽的选择性检测。紫外可见吸收光谱和荧光光谱实验结果表明探针分子1与谷胱甘肽反应后的光谱发生明显红移,可以实现对谷胱甘肽的比率式检测。探针分子1对谷胱甘肽有极高的选择性,不受其它氨基酸尤其是半胱氨酸的干扰。荧光滴定实验表明探针分子1可实现对谷胱甘肽的定量检测,检测限为3.3×10-8 mol/L。探针分子成功地应用于活体细胞中检测谷胱甘肽。
关键词: BODIPY     荧光探针     谷胱甘肽    
A Fluorescent Probe for Selective Detection of GSH
WANG Yuan1,3, CHEN Xiaoxiao2, LIU Xueliang2, CHEN Yuzhe1, NIU Liya2, WU Lizhu1, YANG Qingzheng2     
1. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;
2. College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China;
3. University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
*Corresponding author: NIU Liya, E-mail: niuly@bnu.edu.cn; YANG Qingzheng, E-mail: qzyang@bnu.edu.cn
Abstract: We developed a ratiometric fluorescent probe based on BODIPY which can detect GSH selectively. We did UV-Vis and fluorescence experiments and found that the UV-Vis and fluorescence spectra of probe 1 with GSH exhibited obvious red shifts. Probe 1 exhibited high selectivity and the detection inhibited the interference of Cys and was not interfered by other amino acids. The fluorescence titration experiments showed that probe 1 realized the quantitative detection of GSH with detection limit of 3.3×10-8 mol/L. The probe was successfully applied to the detection of GSH in living cells.
Key words: BODIPY     fluorescent probe     GSH    

生物硫醇如半胱氨酸(Cys)和谷胱甘肽(GSH)等,在维持生命体氧化还原的平衡中扮演着重要角色。其中,半胱氨酸的缺乏会导致生命体出现一系列的症状如儿童成长迟缓、嗜睡、肝损伤、肌肉和脂肪缩减等[1]。而谷胱甘肽作为细胞内含量最多的非蛋白硫醇,可以抵御细胞中的自由基,是体内重要的抗氧化剂, 其非正常含量与癌症、心脏病、阿兹海默症等疾病密切相关[2, 3]。因此实现对它们的选择性检测,对深入了解其与疾病发生的关系有着重要的意义。荧光探针通过荧光信号的改变(强度和位置的变化等)实现对特定分子的识别和检测,具有灵敏度高、操作方便以及响应时间短等优点。基于化学反应的荧光探针已被广泛地应用于对生物硫醇的检测[4, 5]。传统的检测生物硫醇的荧光探针主要是利用巯基具有强的亲核能力这一特性设计的,通过其亲核反应如迈克尔加成[6-8],切断硫硫键[9-11]或磺酸酯键[12, 13]等,引起发光团荧光的变化,实现对生物硫醇的检测。这些方法可以将生物硫醇同其他氨基酸区分开,但是对区分生物硫醇则无能为力。鉴于各种生物硫醇在体内行使不同的生理学功能, 发展能够专一性检测某一种硫醇的方法显得尤为必要。然而由于生物硫醇结构和反应活性的相似性,实现对生物体中不同巯基化合物的选择性检测依然面临很大的挑战。直到最近,关于专一性识别谷胱甘肽[14-16]、半胱氨酸[17-22]、同型半胱氨酸[23, 24]的荧光探针才陆续被报道。

氟化硼二吡咯甲川(boron dipyrrolemethene,BODIPY)是一类非常重要的荧光染料,由于其具有非常优异的光物理性能(如荧光量子产率较高、摩尔吸光系数较大)且光物理和光化学性能稳定,基于BODIPY类的荧光传感器已被广泛的研究和关注[25-27]。2012年我们课题组设计合成了基于氯代BODIPY衍生物的比率式荧光传感器,利用其与谷胱甘肽和半胱氨酸不同的反应机理实现了对生物硫醇的选择性检测[28]。这一新颖的芳香亲核取代-分子内重排检测机理[29-41]为设计选择性检测谷胱甘肽的荧光探针提供了新策略。本文在前期工作的基础上设计合成了一种新的基于BODIPY衍生物的荧光探针分子1:BODIPY的3位被引入苯乙炔基团使荧光分子的光谱发生红移,以避免生物体内自发荧光的干扰;另一方面利用咪唑盐基团代替氯离子作为离去基团增加荧光分子的水溶性。利用荧光探针分子1与谷胱甘肽和半胱氨酸反应机理的不同,实现了对谷胱甘肽的选择性检测。

1 实验部分 1.1 仪器与试剂

核磁共振谱(1HNMR和13CNMR)用Advance Bruker 400 M核磁共振仪测定,四甲基硅烷(TMS)为内标。高分辨质谱用Bruker Apex Ⅳ Fourier Transform质谱仪测定。紫外可见吸收光谱由紫外可见光谱仪Hitachi U-3900测定,荧光发射光谱由荧光光谱仪Hitachi F-4600测定。

光谱数据均在4-羟乙基哌嗪乙磺酸缓冲溶液(HEPES)中测定。HEPES缓冲溶液的配制:称取1.19 g HEPES溶解于200 mL去离子水,溶液的pH值约为6.0。再逐滴加入1 mol/L NaOH溶液,调节溶液的pH值至7.4。将溶液转移到250mL容量瓶中定容,即得20 mmol/L HEPES缓冲溶液(pH=7.4)。

化合物的储备溶液(一般为1 mmol/L)用乙腈配置,用乙腈/HEPES缓冲溶液稀释到所需浓度(如10 μmol/L)。向其中加入相应体积(小于1%)的检测物的贮备溶液,获得所需浓度。

细胞培养及共聚焦成像:人宫颈癌细胞(HeLa)由中国科学院理化技术研究所提供。HeLa细胞在含有10%胎牛血清、50 unit/mL青霉素和50 μg/mL链霉素的DMEM/F12培养液中,37 ℃和5% CO2条件下生长。成像实验之前,细胞在加入所需物质的培养基中孵育一定时间后,用磷酸盐缓冲溶液(PBS)洗3遍。采用Nikon A1R MP激光扫描共聚焦荧光显微镜(60倍油镜)对细胞进行二维扫描。选择合适的激光器及荧光收集范围。

1.2 荧光探针1和模型化合物M1的合成

合成路线见图 1

图 1 荧光探针1和模型化合物M1的合成路线 Fig.1 Synthesis process of 1 and M1
1.2.1 化合物S1的合成[42]

化合物BODIPY-Cl2(35 mg, 0.1 mmol)溶于50 mL甲苯中,在通氮气条件下加入碘化亚铜(10 mg, 0.05 mmol)、双三苯基磷二氯化钯(35 mg, 0.05 mmol)。通10 min氮气后,用注射器加入11 μL苯乙炔(0.1 mmol)和1 mL三乙胺。在65 ℃下搅拌2 h后,减压蒸发溶剂。用硅胶色谱柱提纯(二氯甲烷:石油醚=1:4为淋洗剂),得到33 mg产物,产率为45%。

1.2.2 化合物1的合成

将30 mg(0.07 mmol)化合物S1溶于20 mL乙腈中,加入16.7 μL(0.21 mmol)甲基咪唑,在室温下反应10 h后,减压蒸发溶剂。用硅胶色谱柱提纯(淋洗剂为二氯甲烷:甲醇=100:5),得到16 mg产物,产率为51%。

1HNMR(CDCl3, 400 MHz):11.20(s, 1H), 8.21(s, 1H), 7.66(s, 1H), 7.61(d, 2H, J=8.0 Hz), 7.44(m, 7H), 7.21(d, 1H, J =4.4 Hz), 6.81 (d, 1H, J = 4.0 Hz), 4.29 (s, 3H), 2.48 (s, 3H)。13CNMR (CDCl3, 100 MHz): 146.4, 142.4, 141.4, 140.7, 139.5, 136.8, 133.8, 132.5, 130.9, 130.5, 130.3, 130.0, 129.6, 128.7, 125.9, 123.4, 123.3, 121.4, 113.7, 105.7, 82.5, 37.3, 21.6。HR-ESI-MS: m/z calcd for [M]+ C28H22BF2N4+: 463.1900; found: 463.1901。

1.2.3 模型化合物M1的合成

将30 mg化合物1溶于20 mL乙腈中,加入1当量的巯基乙酸甲酯和三乙胺,在室温下反应6 h后,减压蒸掉溶剂。用硅胶色谱柱提纯(淋洗剂为二氯甲烷:甲醇=100:5) 得到产物M11HNMR (CDCl3, 600 MHz): 7.66(s, 2H), 7.41(m, 5H), 7.31 (d, 2H, J = 7.2 Hz), 6.92 (d, 1H, J = 4.8 Hz), 6.76 (d, 1H, J = 3.6 Hz), 6.67 (d, 1H, J = 4.2 Hz), 6.59 (d, 1H, J = 2.4 Hz), 3.86 (s, 2H), 3.76 (s, 3H), 2.46 (s, 3H)。

2 结果与讨论 2.1 荧光探针1对GSH和Cys的响应性

图 2为10 μmol/L的荧光探针1在加入1 mmol/L的GSH后吸收光谱和荧光光谱随时间变化的曲线。如图 2a,在未加入GSH时,荧光探针1的最大吸收峰在553 nm,当加入GSH后,553 nm的吸收峰减弱并在581 nm处出现一个新的吸收峰,并且随着反应时间的增长,553 nm处的吸收峰逐渐减弱,581 nm处的吸收峰逐渐增强。如图 2b,我们选取了等吸收点565 nm作为激发波长,在未加入GSH时,探针分子1在581 nm处有一个最大的发射峰,当加入GSH后,在605 nm出现了一个新的发射峰,并且随着时间延长,581 nm处的发射峰逐渐减弱而605 nm左右出现的新发射峰逐渐增强。图 2c图 2d为荧光探针1随GSH浓度增加吸收和发射光谱的变化。吸收光谱的变化为:随着GSH浓度的增加,553 nm处的吸收峰逐渐下降,在581 nm处出现一个新的吸收峰并逐渐增强。发射光谱的变化为:随着GSH浓度的增加,581 nm的发射峰逐渐减弱,605 nm的发射峰逐渐增强。如图 3,在0~30 μmol/L浓度范围内,荧光强度比率(I605/I581)与GSH浓度呈线性关系,可以实现对GSH的定量检测。计算可得荧光探针1对GSH的检测限为3.3×10-8 mol/L,说明荧光探针1对GSH具有很高的灵敏度。

图 2 荧光探针1加入100当量GSH后随时间(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30 min)(a)吸收光谱的变化和(b)荧光光谱的变化; 化合物1加入不同浓度GSH(0, 3, 6, 9, 12, 15, 20, 30, 40, 50, 60, 80, 100, 200 μmol/L)10 min后(c)吸收光谱和(d)发射光谱 每个谱图在乙腈/HEPES为1:9的37 ℃缓冲溶液中测得 Fig.2 Time-dependent(a) absorption spectra and (b) fluorescence spectra of 1 with 100 equiv of GSH (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30 min); (c) absorption and (d) emission spectra of 1 after 10 min upon addition of increasing concentrations of GSH (0, 3, 6, 9, 12, 15, 20, 30, 40, 50, 60, 80, 100, 200 μmol/L). Each spectrum was acquired in acetonitrile/HEPES=1: 9 buffer solution at 37 ℃

图 3 荧光强度在605 nm和581 nm处的比率随GSH浓度的变化 Fig.3 Ratio of the fluorescence intensity at 605 nm and 581 nm (I605/I581) as a function of the concentrations of GSH

图 4为荧光探针1在加入Cys后的吸收光谱和荧光光谱的变化。如图 4a,随着Cys加入时间的延长,吸收光谱在550 nm的吸收带逐渐减弱并在500 nm处出现一个新的宽吸收峰。如图 4b,随着Cys加入时间变长,荧光光谱在595 nm出现新的发射峰且发射峰的强度逐渐减弱。通过图 2b图 4b的对比可以看出,探针分子1在加入GSH和Cys后的荧光光谱显著不同,表明了荧光探针1对GSH的检测不受Cys的干扰。

图 4 荧光探针1加入100当量Cys后(a)紫外吸收光谱随时间的变化和(b)荧光光谱随时间的变化(0、1、2、3、4、5、6、7、8、9、10、30 min)。每个谱图在乙腈/HEPES为1:9的缓冲溶液中37 ℃测得 Fig.4 Time-dependent (a) absorption and (b) fluorescence spectra of 1 with 100 equiv of Cys (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30 min). Each spectrum was acquired in acetonitrile/HEPES=1: 9 buffer solution at 37 ℃
2.2 荧光探针1与GSH和Cys的反应机理

根据上述吸收和荧光光谱的数据,结合之前的研究工作,本文提出了荧光探针1与GSH和Cys反应的机理。如图 5所示,在pH为7.4时,巯基化合物有强的亲核能力,迅速取代咪唑盐部分生成巯基化合物23,而化合物3可以进一步通过五元环过渡态4发生分子内取代反应生成化合物5。而化合物2想要发生类似的分子内重排需要经过不稳定的大环过渡态,所以以2的形式稳定存在。因此化合物1与GSH会生成巯基取代的终产物,而化合物1与Cys会生成氨基取代的产物。而BODIPY巯基取代的产物与BODIPY氨基取代的产物在光物理性质上有很大差异,BODIPY巯基取代产物的荧光强度明显比BODIPY氨基取代产物的荧光强度强很多。因此探针分子1可以选择性检测GSH和Cys。

图 5 荧光探针1与GSH和Cys反应机理示意图 Fig.5 Proposed mechanism for the reactions of compound 1 with GSH and Cys

为验证以上机理,将1与巯基乙酸甲酯反应的产物M1合成并分离出来作为模型化合物。M1吸收光谱在580 nm有一个最大吸收峰(图 6a), 其发射光谱在602 nm处有一个最大发射峰(图 6b), 其吸收和发射峰与GSH加入到荧光探针1后的吸收和发射光谱相似,说明荧光探针1与GSH的反应是巯基取代咪唑盐部分生成巯基化合物。同时研究了化合物1与N-乙酰半胱氨酸(NAC)的荧光光谱。NAC与Cys结构相似,只是将氨基换成了乙酰胺。NAC由于没有氨基,与化合物1反应只出现了巯基产物的发射峰(图 7a)。进一步证明了芳香亲核取代-分子内重排的反应机理。

图 6 模型化合物M1与荧光探针1加入100当量GSH后的(a)紫外吸收光谱和(b)荧光光谱 每个谱图在乙腈/HEPES为1:9的缓冲溶液中37 ℃测得 Fig.6 (a) Absorption and (b)fluorescence spectra of M1 and 1 with 100 equiv of GSH Each spectrum was acquired in 1: 9 acetonitrile/HEPES buffer solution at 37 ℃

图 7 (a)荧光探针1加入100当量N-乙酰半胱氨酸后荧光随时间变化谱图; (b)荧光探针1 (10 μmol/L)加入100当量的不同分析物后荧光比率变化 条柱代表荧光强度在605 nm与581 nm处的比率(I605/I581)。谱图在乙腈/HEPES为1:9的缓冲溶液中37 ℃测得 Fig.7 (a) Time-dependent fluorescence spectra of 1 with 100 equiv of NAC (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 60 min); (b) ratiometric responses of 1 (10 μmol/L) upon addition of 100 equiv of various analytes. Bars represent the fluorescence intensity ratio I605/I581. Each spectrum was acquired in acetonitrile/HEPES=1: 9 buffer solution at 37 ℃
2.3 荧光探针分子1对GSH的选择性

在相同的条件下测试荧光探针1对GSH、Cys和其他氨基酸(Ala,Arg,Asn,Asp,Phy,Leu,Lys,Met,Ser,Tyr,Glu,Ile,Gly,His)的选择性。如图 7b,通过荧光光谱的测试得到荧光探针1在GSH、Cys和其他氨基酸的存在下于605 nm和581 nm的荧光强度比率I605/I581。研究发现在GSH和Cys存在下I605/I581分别为6.20和1.23,而其他氨基酸几乎对荧光探针1的荧光光谱无影响,I605/I581与空白样比率接近均在0.40左右。实验表明了荧光探针1对GSH有很好的选择性。

2.4 细胞成像实验

将荧光探针1应用于细胞内成像(图 8)。HeLa细胞用1 (5 μmol/L)孵育15 min后,在共聚焦显微镜下可以在绿色通道(500~550 nm)和红色通道(570~620 nm)观察到明显的荧光。将两个通道的荧光强度做比率图谱,荧光强度比值在3左右。同时做了对比试验:先将HeLa细胞用1 mmol/L的马来酰亚胺孵育30 min,将细胞内的生物硫醇选择性反应掉,再用化合物1 (5 μmol/L)孵育15 min。实验观察到两个通道的荧光强度比率降到1。以上数据表明细胞内有/无GSH存在下绿色通道(500~550 nm)和红色通道(570~620 nm)荧光强度比率值有明显差异,表明探针分子1可在细胞中对GSH进行特异性识别。

图 8 HeLa细胞用1 (5 μmol/L)孵育15 min后的共聚焦荧光照片和明场照片:(a)绿色通道(500~550 nm), (b)红色通道(570~620 nm), (c)a和b的荧光强度比值,(d)明场照片;HeLa细胞先用1 mmol/L N-乙基马来酰亚胺孵育30 min后,再用1 (5 μmol/L)孵育15 min的共聚焦荧光照片和明场照片:(e)绿色通道(500~550 nm), (f)红色通道(570~620 nm), (g) f和e的荧光强度比值, (h)明场照片 Fig.8 (a-d) Confocal fluorescence and bright-field images of living HeLa cells incubated with probe 1 (5 μmol/L) for 15 min:(a) green channel at 500-550 nm; (b) red channel at 570-620 nm; (c) ratio image generated from (b) and (a); (d) bright-field transmission image. Confocal fluorescence and bright-field images of living HeLa cells incubated with the probe 1 (5 μmol/L) for 15 min after preincubation with 1 mmol/L NEM for 30 min:(e) green channel at 500-550 nm; (f) red channel at 570-620 nm; (g) ratio image generated from (f) and (e); (h) bright-field transmission image
3 结论

本文设计并合成了基于BODIPY的比率式荧光探针。荧光探针分子与谷胱甘肽发生芳香亲核取代反应生成巯基取代的产物,而荧光探针分子与半胱氨酸会通过芳香亲核取代-分子内重排生成氨基取代的产物。利用巯基取代的BODIPY与氨基取代的BODIPY光物理性质的差异实现了对谷胱甘肽的选择性检测,降低了半胱氨酸的干扰。同时荧光探针分子也未受其他氨基酸的干扰,表现出对谷胱甘肽的高选择性。荧光探针分子对谷胱甘肽的检测限为3.3×10-8 mol/L。而且荧光探针对谷胱甘肽的检测也成功地应用到了活体HeLa细胞中。本文发展的荧光探针分子有望应用于细胞内活体物种的选择性检测。

致谢 衷心感谢国家973项目(2013CB933800) 的支持!
参考文献
[1] Shahrokhian S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode[J]. Analytical Chemistry, 2001, 73: 5972–5978. DOI:10.1021/ac010541m
[2] Townsend D M, Tew K D, Tapiero H. The importance of glutathione in human disease[J]. Biomedicine & Pharmacotherapy, 2003, 57: 145–155.
[3] Lu S C. Regulation of glutathione synthesis[J]. Molecular Aspects of Medicine, 2009, 30: 42–59. DOI:10.1016/j.mam.2008.05.005
[4] Jung H, Chen X, Kim J, Yoon J. Recent progress in luminescent and colorimetric chemosensors for detection of thiols[J]. Chemical Society Reviews, 2013, 42: 6019–6031. DOI:10.1039/c3cs60024f
[5] Niu L Y, Chen Y Z, Zheng H R, Wu L Z, Tung C H, Yang Q Z. Design strategies of fluorescent probes for selective detection among biothiols[J]. Chemical Society Reviews, 2015, 44: 6143–6160. DOI:10.1039/C5CS00152H
[6] Hewage H S, Anslyn E V. Pattern-based recognition of thiols and metals using a single squaraine indicator[J]. Journal of the American Chemical Society, 2009, 131: 13099–13106. DOI:10.1021/ja904045n
[7] Yi L, Li H, Sun L, Liu L, Zhang C, Xi Z. A highly sensitive fluorescence probe for fast thiol-quantification assay of glutathione reductase[J]. Angewandte Chemie International Edition, 2009, 48: 4034–4037. DOI:10.1002/anie.v48:22
[8] Umezawa K, Yoshida M, Kamiya M, Yamasoba T, Urano Y. Rational design of reversible fluorescentprobes for live-cell imaging and quantification of fast glutathione dynamics[J]. Nature Chemistry, 2017, 9: 279–286.
[9] Pires M M, Chmielewski J. Fluorescence imaging of cellularglutathione using a latent rhodamine[J]. Organic Letters, 2008, 10: 837–840. DOI:10.1021/ol702769n
[10] Cao X, Lin W, Yu Q. A ratiometric fluorescent probe for thiols based on a tetrakis(4-hydroxyphenyl)porphyrin-coumarin scaffold[J]. The Journal of Organic Chemistry, 2011, 76: 7423–7430. DOI:10.1021/jo201199k
[11] Zheng Z, Chen P, Xie M, Wu C, Luo Y, Wang W, Jiang J, Liang G. Cell environment-differentiated self-assembly of nanofibers[J]. Journal of the American Chemical Society, 2016, 138: 11128–11131. DOI:10.1021/jacs.6b06903
[12] Zhang J, Shibata A, Ito M, Shuto S, Ito Y, Mannervik B, Abe H, Morgenstern R. Synthesis and characterization of a series of highly fluorogenic substrates for glutathione transferases, a general strategy[J]. Journal of the American Chemical Society, 2011, 133: 14109–14119. DOI:10.1021/ja205500y
[13] Shao J, Sun H, Guo H, Ji S, Zhao J, Wu W, Yuan X, Zhang C, James T D. A highly selective red-emitting FRET fluorescent molecular probe derived from BODIPY for the detection of cysteine and homocysteine: an experimental and theoretical study[J]. Chemical Science, 2012, 3: 1049–1061. DOI:10.1039/C2SC00762B
[14] Isik M, Guliyev R, Kolemen S, Altay Y, Senturk B, Tekinay T, Akkaya E U. Designing an intracellular fluorescent probe for glutathione: two modulation sites for selective signal transduction[J]. Organic Letters, 2014, 16: 3260–3263. DOI:10.1021/ol501272z
[15] He L, Xu Q, Liu Y, Wei H, Tang Y, Lin W. Coumarin-based turn-on fluorescence probe for specific detection of glutathione over cysteine and homocysteine[J]. ACS Applied Materials & Interfaces, 2015, 7: 12809–12813.
[16] Liu Y, Lv X, Liu J, Sun Y Q, Guo W. Construction of a selective fluorescent probe for GSH based on a chloro-functionalized coumarin-enone dye platform[J]. Chemistry A European Journal, 2015, 21: 4747–4754. DOI:10.1002/chem.201406004
[17] Yang X, Guo Y, Strongin R M. Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine[J]. Angewandte Chemie International Edition, 2011, 50: 10690–10693. DOI:10.1002/anie.201103759
[18] Gao X, Li X, Li L, Zhou J, Ma H. A simple fluorescent off-on probe for the discrimination of cysteine fromglutathione[J]. Chemical Communications, 2015, 51: 9388–9390. DOI:10.1039/C5CC02788H
[19] Miao Q, Li Q, Yuan Q, Li L, Hai Z, Liu S, Liang G. Discriminative fluorescence sensing of biothiols in vitro and in living cells[J]. Analytical Chemistry, 2015, 87: 3460–3466. DOI:10.1021/ac504836a
[20] Zhang J, Wang J, Liu J, Ning L, Zhu X, Yu B, Liu X, Yao X, Zhang H. Near-infrared and naked-eye fluorescence probe for direct and highly selective detection of cysteine and its application in living cells[J]. Analytical Chemistry, 2015, 87: 4856–4863. DOI:10.1021/acs.analchem.5b00377
[21] Niu W, Guo L, Li Y, Shuang S, Dong C, Wong M. Highly selective two-photon fluorescent probe for ratiometric sensing and imaging cysteine in mitochondria[J]. Analytical Chemistry, 2016, 88: 1908–1914. DOI:10.1021/acs.analchem.5b04329
[22] Yue Y, Huo F, Ning P, Zhang Y, Chao J, Meng X, Yin C. Dual-site fluorescent probe for visualizing the metabolism of Cys in living cells[J]. Journal of the American Chemical Society, 2017, 139: 3181–3185. DOI:10.1021/jacs.6b12845
[23] Hakuna L, Escobedo J, Lowry M, Barve A, McCallum N, Strongin R M. A photochemical method for determining plasma homocysteine with limited sample processing[J]. Chemical Communications, 2014, 50: 3071–3073. DOI:10.1039/C4CC00432A
[24] Lee H, Choi Y, Kim S, Yoon T, Guo Z, Lee S, Swamy K M K, Kim G, Lee J, Shin I, Yoon J. Selective homocysteine turn-on fluorescent probes and their bioimaging applications[J]. Chemical Communications, 2014, 50: 6967–6969. DOI:10.1039/c4cc00243a
[25] Loudet A, Burgess K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties[J]. Chemical Reviews, 2007, 107: 4891–4932. DOI:10.1021/cr078381n
[26] Boens N, Leen V, Dehaen W. Fluorescent indicators based on BODIPY[J]. Chemical Society Reviews, 2012, 41: 1130–1172. DOI:10.1039/C1CS15132K
[27] Kowada T, Maeda H, Kikuchi K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells[J]. Chemical Society Reviews, 2015, 44: 4953–4972. DOI:10.1039/C5CS00030K
[28] Niu L Y, Guan Y S, Chen Y Z, Wu L Z, Tung C H, Yang Q Z. BODIPY-based ratiometroc fluorescent sensor for highly selective detection of glutathione over cystein and homocystein[J]. Journal of the American Chemical Society, 2012, 134: 18928–18931. DOI:10.1021/ja309079f
[29] Niu L Y, Guan Y S, Chen Y Z, Wu L Z, Tung C H, Yang Q Z. A turn-on fluorescent sensor for the discriminationof cystein from homocystein and glutathione[J]. Chemical Communications, 2013, 49: 1294–1296. DOI:10.1039/c2cc38429a
[30] Yin J, Kwon Y, Kim D, Lee D, Kim G, Hu Y, Ryu G H, Yoon J. Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues[J]. Journal of the American Chemical Society, 2014, 136: 5351–5358. DOI:10.1021/ja412628z
[31] Liu J, Sun Y Q, Huo Y, Zhang H, Wang L, Zhang P, Song D, Shi Y, Guo W. Simultaneous fluorescence sensing of Cys and GSH from different emission channels[J]. Journal of the American Chemical Society, 2014, 136: 574–577. DOI:10.1021/ja409578w
[32] Kim S Y, Hong K H, Kim D, Kwon H, Kim H J. Tunable heptamethine-azo dye conjugate as an NIR fluorescent probe for the selective detection of mitochondrial glutathione over cysteine and homocysteine[J]. Journal of the American Chemical Society, 2014, 136: 7018–7025. DOI:10.1021/ja500962u
[33] Wang X, Lv J, Yao X, Li Y, Huang F, Li M, Yang J, Ruan X, Tang B. Screening and investigation of a cyanine fluorescent probe for simultaneous sensing of glutathione and cysteine under single excitation[J]. Chemical Communications, 2014, 50: 15439–15442. DOI:10.1039/C4CC06637E
[34] Liu J, Sun Y Q, Zhang H, Huo Y, Shi Y, Guo W. Simultaneous fluorescent imaging of Cys/Hcy and GSH from different emission channels[J]. Chemical Science, 2014, 5: 3183–3188. DOI:10.1039/c4sc00838c
[35] Guan Y S, Niu L Y, Chen Y Z, Wu L Z, Tung C H, Yang Q Z. A near-infrared fluorescent sensor for selective detection of cysteine and its application in live cell imaging[J]. RSC Advances, 2014, 4: 8360–8364. DOI:10.1039/c3ra47116k
[36] Niu L Y, Zheng H R, Chen Y Z, Wu L Z, Tung C H, Yang Q Z. Fluorescent sensors for selective detection of thiols: expanding the intramolecular displacement based mechanism to new chromophores[J]. Analyst, 2014, 139: 1389–1395. DOI:10.1039/c3an01849k
[37] Jia M Y, Niu L Y, Zhang Y, Yang Q Z, Tung C H, Guan Y F, Feng L. BODIPY-based fluorometric sensor for the simultaneous determination of Cys, Hcy and GSH in human serum[J]. ACS Applied Materials & Interfaces, 2015, 7: 5907–5914.
[38] Niu L Y, Yang Q Q, Zheng H R, Chen Y Z, Wu L Z, Tung C H, Yang Q Z. BODIPY-based fluorescent probe for thesimultaneous detection of glutathione and cysteine/homocysteine at different excitation wavelengths[J]. RSC Advances, 2015, 5: 3959–3964. DOI:10.1039/C4RA13526A
[39] Niu L Y, Jia M Y, Chen P Z, Chen Y Z, Zhang Y, Wu L Z, Duan X F, Tung C H, Guan Y F, Feng L, Yang Q Z. Colorimetric sensors with different reactivity for the quantitative determination of cysteine, homocysteine and glutathione in a mixture[J]. RSC Advances, 2015, 5: 13042–13045. DOI:10.1039/C4RA16601A
[40] Liu X L, Niu L Y, Chen Y Z, Zheng M L, Yang Y, Yang Q Z. A mitochondria-targeting fluorescent probe for the selective detection of glutathione in living cells[J]. Organic & Biomolecular Chemistry, 2017, 15: 1072–1075.
[41] Liu X L, Niu L Y, Chen Y Z, Yang Y, Yang Q Z. A multi-emissive fluorescent probe for the discrimination of glutathione and cysteine[J]. Biosensors and Bioelectronics, 2017, 90: 403–409. DOI:10.1016/j.bios.2016.06.076
[42] Rohand T, Qin W, Boens N, Dehaen W. Palladium-catalyzed coupling reactions for the functionalization of BODIPY dyes with fluorescence spanning the visible spectrum[J]. European Journal of Organic Chemistry, 2006, 20: 4658–4663.