影像科学与光化学 ›› 2015, Vol. 33 ›› Issue (5): 417-425.DOI: 10.7517/j.issn.1674-0475.2015.05.417

• 论文 • 上一篇    下一篇

石墨相氮化碳纳米管的合成及光催化产氢性能

郑云, 王博, 王心晨   

  1. 福州大学 化学学院 能源与环境光催化国家重点实验室, 福建 福州 350002
  • 收稿日期:2015-07-01 修回日期:2015-07-12 出版日期:2015-09-16 发布日期:2015-09-16
  • 通讯作者: 王心晨
  • 基金资助:

    国家重点基础研究发展规划973项目(2013CB632405)、国家自然科学基金资助项目(21425309和21173043)和高等学校博士学科点专项科研基金(20133514110003)资助

Graphitic Carbon Nitride Nanotubes: Synthesis and Photocatalytic Activity for Hydrogen Evolution

ZHENG Yun, WANG Bo, WANG Xinchen   

  1. State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, Fujian, P. R. China
  • Received:2015-07-01 Revised:2015-07-12 Online:2015-09-16 Published:2015-09-16

摘要:

通过硬模板法,采用氰胺前驱物和二氧化硅纳米管(SiO2-NTs)模板,合成石墨相氮化碳纳米管(CN-NTs)光催化剂。采用扫描电镜(SEM)、透射电镜(TEM)、X射线粉末衍射(XRD)、傅立叶变换红外光谱(FT-IR)、氮气吸附/脱附测试、紫外可见漫反射光谱(UV-Vis DRS)、荧光光谱、热重分析(TGA)等手段对CN-NTs催化剂的结构与性能进行表征。结果表明,CN-NTs的化学组成是石墨相氮化碳(g-C3N4),形貌为均匀的纳米管,且是介孔材料。与体相氮化碳(B-CN)和介孔石墨相氮化碳(mpg-CN)相比,CN-NTs的光吸收带边蓝移到440 nm,荧光发射谱的峰强减弱。在可见光(λ>420 nm)照射下,CN-NTs具有较高的光催化分解水活性,产氢速率为58 μmol/h,且表现出良好的光催化活性稳定性和化学结构稳定性。研究结果表明纳米管状结构能有效促进g-C3N4半导体激子解离,提高光生电子-空穴的分离效率,进而显著优化g-C3N4的光催化产氢性能。

关键词: 石墨相氮化碳, 纳米管, 硬模板, 光催化, 氢能

Abstract:

Graphitic carbon nitride nanotubes (CN-NTs) photocatalyst has been synthesized by a hard-template method by using cyanamide as a precursor and silica nanotubes (SiO2-NTs) as a hard template. The structure and properties of CN-NTs catalyst are characterized by the techniques of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), nitrogen absorption/desorption experiment, ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS), fluorescence spectra and thermogravimetric analysis (TGA). As demonstrated by the experimental results, CN-NTs possess the chemical structure of graphitic carbon nitride (g-C3N4) and the morphology of uniform nanotubes, and belong to mesoporous materials. Compared with the bulk carbon nitride (B-CN) and the mesoporous graphitic carbon nitride (mpg-CN), the optical absorption band edge of CN-NTs blue-shifts to 440 nm, and the peak intensity of the fluorescence emission spectra for CN-NTs reduces. With the visible light irradiation (λ>420 nm), CN-NTs show an outstanding photocatalytic water splitting activity with the hydrogen evolution rate of 58 μmol/h, and also demonstrate excellent stability in photocatalytic activity and chemical structure. The investigation results indicate that the nanotube structure effectively promotes the exciton separation of g-C3N4 semiconductor, and improves the separation efficiency of photogenerated electrons and holes, thus remarkably optimizing the photocatalytic activity of g-C3N4 toward hydrogen evolution.

Key words: graphitic carbon nitride, nanotube, hard template, photocatalysis, hydrogen energy