[1] Han S, Wei C Y, Hou Z L, et al. Prevalence of congenital heart disease amongst schoolchildren in Southwest China[J]. Indian Pediatrics, 2020, 57(2):138-141. [2] Wu X L, Li R, Fu F, et al. Chromosome microarray analysis in the investigation of children with congenital heart disease[J]. BMC Pediatrics, 2017, 17(1):117. [3] Wilkinson K L, Brunskill S J, Doree C, et al. Red cell transfusion management for patients undergoing cardiac surgery for congenital heart disease[J]. The Cochrane Database of Systematic Reviews, 2014(2):Cd009752. [4] Hamdan A, Shapira Y, Bengal T, et al. Tissue Doppler imaging in patients with advanced heart failure:Relation to functional class and prognosis[J]. The Journal of Heart and Lung Transplantation:the Official Publication of the International Society for Heart Transplantation, 2006, 25(2):214-218. [5] Lunze F I, Singh T P, Gauvreau K, et al. Comparison of tissue Doppler imaging and conventional echocardiography to discriminate rejection from non-rejection after pediatric heart transplantation[J]. Pediatric Transplantation, 2020, 24(5):e13738. [6] Tei C, Ling L H, Hodge D O, et al. New index of combined systolic and diastolic myocardial performance:A simple and reproducible measure of cardiac function-A study in normals and dilated cardiomyopathy[J]. Journal of Cardiology, 1995, 26(6):357-366. [7] Zhou Q, Henein M, Coats A, et al. Different effects of abnormal activation and myocardial disease on left ventricular ejection and filling times[J]. Heart:British Cardiac Society, 2000, 84(3):272-276. [8] 陈图敏, 李俊辉. TDI-Z指数联合TDI-Tei指数评价左向右分流型先天性心脏病合并肺动脉高压患儿右心功能[J]. 中国医学创新, 2014, 11(20):1-4. [9] Hoelscher S C, Doppler S A, Dreßen M, et al. microRNAs:Pleiotropic players in congenital heart disease and regenera-tion[J]. Journal of Thoracic Disease, 2017, 9(Suppl 1):S64-s81. [10] Nagy O, Baráth S, Ujfalusi A. The role of microRNAs incongenital heart disease[J]. EJIFCC, 2019, 30(2):165-178. [11] Lv P, Zhou M X, He J, et al. Circulating miR-208b and miR-34a are associated with left ventricular remodeling after acute myocardial infarction[J]. International Journal of Molecular Sciences, 2014, 15(4):5774-5788. [12] 万楠, 王璐, 郑伟, 等. 血浆miR-324-5p对单纯性先天性心脏病早期诊断的应用评估[J]. 现代检验医学杂志, 2014(5):58-59, 63. [13] Li N, Wang K, Li P F. MicroRNA-34 family and its role in cardiovascular disease[J]. Critical Reviews in Eukaryotic Gene Expression, 2015, 25(4):293-297. [14] 李晓伟, 奉淑君, 周凤华, 等. miR-34a在心血管疾病中的作用及机制研究进展[J]. 中国动脉硬化杂志, 2019, 27(7):624-628. [15] Kaya B, Tayyar A, Sezer S, et al. The assessment of cardiac function with tissue Doppler imaging in fetuses with congenital diaphragmatic hernia[J]. The Journal of Maternal-fetal & Neonatal Medicine, 2020, 33(7):1233-1238. [16] Waggoner A D, Bierig S M. Tissue Doppler imaging:A useful echocardiographic method for the cardiac sonographer to assess systolic and diastolic ventricular function[J]. Journal of the American Society of Echocardiography, 2001, 14(12):1143-1152. [17] Yu C M, Sanderson J E, Marwick T H, et al. Tissue Doppler imaging:A new prognosticator for cardiovascular diseases[J]. Journal of the American College of Cardiology, 2007, 49(19):1903-1914. [18] Ho C Y, Solomon S D. A clinician's guide to tissue Doppler imaging[J]. Circulation, 2006, 113(10):e396-e398. [19] Grapsa I, Pavlopoulos H, Dawson D, et al. Retrospective study of pulmonary hypertensive patients:Is right ventricular myocardial performance index a vital prognostic factor?[J]. Hellenic Journal of Cardiology, 2007, 48(3):152-160. [20] Dyer K L, Pauliks L B, Das B, et al. Use of myocardial performance index in pediatric patients with idiopathic pulmonary arterial hypertension[J]. Journal of the American Society of Echocardiography, 2006, 19(1):21-27. [21] Bruch C, Schmermund A, Dagres N, et al. Tei-Index in coronary artery disease:validation in patients with overall cardiac and isolated diastolic dysfunction[J]. Zeitschrift fur Kardiologie, 2002, 91(6):472-480. [22] Ishii M, Eto G, Tei C, et al. Quantitation of the global right ventricular function in children with normal heart and congenital heart disease:A right ventricular myocardial performance index[J]. Pediatric Cardiology, 2000, 21(5):416-421. [23] Boucherat O, Potus F, Bonnet S. microRNA and pulmonary hypertension[J]. Advances in Experimental Medicine & Biology, 2015, 888:237-252. [24] Wu K H, Xiao Q R, Yang Y, et al. MicroRNA-34a modulates the Notch signaling pathway in mice with congenital heart disease and its role in heart development[J]. Journal of Molecular and Cellular Cardiology, 2018, 114:300-308. [25] Garg V, Muth A N, Ransom J F, et al. Mutations in NOTCH1 cause aortic valve disease[J]. Nature, 2005, 437(7056):270-274. [26] Luxán G, D'Amato G, MacGrogan D, et al. Endocardial notch signaling in cardiac development and disease[J]. Circulation Research, 2016, 118(1):e1-e18. [27] Zhou X L, Liu J C. Role of Notch signaling in the mammalian heart[J]. Brazilian Journal of Medical and Biological Research, 2014, 47(1):1-10. [28] Guo Y M, Chao L E, Chao J L. Kallistatin attenuates endothelial senescence by modulating Let-7g-mediated miR-34a-SIRT1-eNOS pathway[J]. Journal of Cellular and Molecular Medicine, 2018, 22(9):4387-4398. [29] Badi I, Mancinelli L, Polizzotto A, et al. miR-34a promotes vascular smooth muscle cell calcification by downregulating SIRT1(Sirtuin 1) and Axl (AXL Receptor Tyrosine Kinase)[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38(9):2079-2090. [30] Fan F, Sun A J, Zhao H T, et al. MicroRNA-34a promotes cardiomyocyte apoptosis post myocardial infarction through down-regulating aldehyde dehydrogenase 2[J]. Current Pharmaceutical Design, 2013, 19(27):4865-4873. |